On the problem of weights in multiple criteria decision making (the noncompensatory approach). (English) Zbl 0579.90059

Summary: This paper shows how the notion of ’relative importance of attributes’ can be defined within the framework of the noncompensatory approach to multiple criteria decision making. The problem of weights then appears as a problem of functional representation of relations. We state some theoretical results concerning this problem and outline a practical decision-aid (TACTIC) based on the ideas introduced in the paper.


90B50 Management decision making, including multiple objectives
Full Text: DOI


[1] Borda, J. C.de, Mémoire sur les Elections au Scrutin (1781), Histoire de l’Académie Royale des Sciences
[2] Bouyssou, D., Approches Descriptives et Constructives d’Aide à la Décision: Fondements et Comparaison, (Thèse de 3ème cycle (1984), Université de Paris: Université de Paris Dauphine)
[3] Bouyssou, D.; Vansnick, J. C., Noncompensatory and generalized noncompensatory preference structures, (Cahiers du LAMSADE 59 (1985), Université de Paris: Université de Paris Dauphine) · Zbl 0605.90003
[4] Condorcet, Marquis de, Essai sur l’Application de l’Analyse à la Probabilité des Décisions Rendues à la Pluralité des Voix (1785), Paris
[5] Domotor, Z.; Stelzer, J., Representation of finitely additive semiordered qualitative probability structure, Journal of Mathematical Psychology, 8, 145-168 (1971) · Zbl 0226.60012
[6] Dyer, J. S.; Sarin, R. K., Relative risk aversion, Management Science, 28, 875-886 (1982) · Zbl 0487.90004
[7] Fine, T. L., Theories of Probability. An Examination of Foundations (1973), Academic Press: Academic Press New York · Zbl 0275.60006
[8] Fishburn, P. C., Weak qualitative probability on finite sets, The Annals of Mathematical Statistics, 40, 2118-2126 (1969) · Zbl 0193.44402
[9] Fishburn, P. C., Noncompensatory preferences, Synthese, 33, 393-403 (1976) · Zbl 0357.90004
[10] Keeney, R. L.; Raiffa, H., Decisions with Multiple Objectives: Preferences and Value Tradeoffs (1976), Wiley: Wiley New York · Zbl 0488.90001
[11] Krantz, D. H.; Luce, R. D.; Suppes, P.; Tversky, A., (Foundations of Measurement, Vol. 1, Additive and Polynomial Representations (1971), Academic Press: Academic Press New York) · Zbl 0232.02040
[12] Krzysztofowicz, R., Strength of preference and risk attitude in utility measurement, Organizational Behavior and Human Performance, 31, 88-113 (1983)
[13] Mangasarian, O. L., Nonlinear Programming (1969), McGraw-Hill: McGraw-Hill New York · Zbl 0194.20201
[14] Pirlot, M.; Vansnick, J. C., A method for determining weights within the framework of the noncompensatory approach to decision problems, (Working paper 1984/2 (1984), Université de Mons-Hainaut: Université de Mons-Hainaut Mons)
[15] Roberts, F. S., Measurement Theory with Applications to Decision Making, Utility and the Social Sciences (1979), Addison-Wesley: Addison-Wesley London
[16] Roy, B., Classement et choix en présence de points de vue multiples (la méthode Electre), R.I.R.O., 8, 57-75 (1968)
[17] Roy, B.; Bertier, P., La méthode Electre II. Une application au média-planning, (Ross, M., Operational Research ’72 (1973), North-Holland: North-Holland Amsterdam), 291-302
[18] Sarin, R. K., Measurable value function theory: Survey and open problems, (Hansen, P., Essays and Surveys on Multiple Criteria Decision Making (1983), Springer: Springer Berlin), 337-346
[19] Scott, D., Measurement structures and linear inequalities, Journal of Mathematical Psychology, 1, 233-247 (1964) · Zbl 0129.12102
[20] Vansnick, J. C., Strength of preference. Theoretical and practical aspects, (Brans, J. P., Operational Research ’84 (1984), North-Holland: North-Holland Amsterdam), 449-463
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.