×

zbMATH — the first resource for mathematics

Studying planet populations by gravitational microlensing. (English) Zbl 1197.83025
Summary: The ‘most curious’ effect of the bending of light by the gravity of stars has evolved into a successful technique unlike any other for studying planets within the Milky Way and even other galaxies. With a sensitivity to cool planets around low-mass stars even below the mass of Earth, gravitational microlensing fits in between other planet search techniques to form a complete picture of planet parameter space, which is required to understand their origin in general, that of habitable planets more particularly, and that of planet Earth especially. Current campaigns need to evolve from first detections to obtaining a sample with well-understood selection bias that allows to draw firm conclusions about the planet populations. With planetary signals being a transient phenomenon, gravitational microlensing is a driver for new technologies in scheduling and management of non-proprietary heterogeneous telescope networks, and can serve to demonstrate forefront science live to the general public.

MSC:
83C10 Equations of motion in general relativity and gravitational theory
85A05 Galactic and stellar dynamics
Software:
GAUDI
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Einstein A.: Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes. Ann. Phys. 340, 898–908 (1911) · JFM 42.0852.01 · doi:10.1002/andp.19113401005
[2] Renn J., Sauer T., Stachel J.: The origin of gravitational lensing: a postscript to Einstein’s 1936 science paper. Science 275, 184–186 (1979) · Zbl 1226.83003 · doi:10.1126/science.275.5297.184
[3] Einstein A.: Lens-like action of a star by the deviation of light in the gravitational field. Science 84, 506–507 (1936) · Zbl 0015.27806 · doi:10.1126/science.84.2188.506
[4] Liebes S.J.: Gravitational lenses. Phys. Rev. 133, B835–B844 (1964) · Zbl 0116.21405 · doi:10.1103/PhysRev.133.B835
[5] Mayor M., Queloz D.: A Jupiter-mass companion to a solar-type star. Nature 378, 355 (1995) · doi:10.1038/378355a0
[6] Henry G.W., Marcy G.W., Butler R.P., Vogt S.S.: A transiting ”51 peg-like” planet. Astrophys. J. 529, L41–L44 (2000) · doi:10.1086/312458
[7] Charbonneau D., Brown T.M., Latham D.W., Mayor M.: Detection of planetary transits across a Sun-like star. Astrophys. J. 529, L45–L48 (2000) · doi:10.1086/312457
[8] Udalski A., \.Zebrun K., Szymański M., Kubiak M., Soszyński I., Szewczyk O., Wyrzykowski Ł., Pietrzyński G.: The optical gravitational lensing experiment. Search for planetary and low- luminosity object transits in the galactic disk. Results of 2001 campaign–supplement. Acta Astron. 52, 115–128 (2002)
[9] Schneider, J.: The Extrasolar Planets Encyclopaedia. http://www.exoplanet.eu
[10] Chauvin G., Lagrange A., Dumas C., Zuckerman B., Mouillet D., Song I., Beuzit J., Lowrance P.: A giant planet candidate near a young brown dwarf. Direct VLT/NACO observations using IR wavefront sensing. Astron. Astrophys. 425, L29–L32 (2004) · doi:10.1051/0004-6361:200400056
[11] Marois C., Macintosh B., Barman T., Zuckerman B., Song I., Patience J., Lafrenière D., Doyon R.: Direct imaging of multiple planets orbiting the star HR 8799. Science 322, 1348–1352 (2008) · doi:10.1126/science.1166585
[12] Covone G., de Ritis R., Dominik M., Marino A.A.: Detecting planets around stars in nearby galaxies. Astron. Astrophys. 357, 816–822 (2000)
[13] Chung S.J., Kim D., Darnley M.J., Duke J.P., Gould A., Han C., Jeon Y.B., Kerins E., Newsam A., Park B.G.: The possibility of detecting planets in the Andromeda galaxy. Astrophys. J. 650, 432–437 (2006) · doi:10.1086/506930
[14] An J.H. et al.: The anomaly in the candidate microlensing event PA-99-N2. Astrophys. J. 601, 845–857 (2004) · doi:10.1086/380820
[15] Ingrosso G., Novati S.C., de Paolis F., Jetzer P., Nucita A.A., Zakharov A.F.: Pixel lensing as a way to detect extrasolar planets in M31. Mon. Not. R. Astron. Soc. 399, 219–228 (2009) · doi:10.1111/j.1365-2966.2009.15184.x
[16] Mao S., Paczyński B.: Gravitational microlensing by double stars and planetary systems. Astrophys. J. 374, L37–L40 (1991) · doi:10.1086/186066
[17] Dominik, M., et al.: ARTEMiS–Microlensing Planet Hunt Live. http://www.artemis-uk.org/catch-a-planet.html
[18] Einstein A.: Erklärung der Perihelionbewegung der Merkur aus der allgemeinen Relativitätstheorie. Sitzungsber. preuss. Akad. Wiss. 47, 831–839 (1915) · JFM 45.1120.01
[19] Paczyński B.: Gravitational microlensing of the Galactic bulge stars. Astrophys. J. 371, L63–L67 (1991) · doi:10.1086/186003
[20] Kiraga M., Paczyński B.: Gravitational microlensing of the galactic bulge stars. Astrophys. J. 430, L101–L104 (1994) · doi:10.1086/187448
[21] Dominik M.: Stochastic distributions of lens and source properties for observed galactic microlensing events. Mon. Not. R. Astron. Soc. 367, 669–692 (2006) · doi:10.1111/j.1365-2966.2006.10004.x
[22] Refsdal S.: The gravitational lens effect. Mon. Not. R. Astron. Soc. 128, 295–306 (1964) · Zbl 0124.22101
[23] Paczyński B.: Gravitational microlensing by the galactic halo. Astrophys. J. 304, 1–5 (1986) · doi:10.1086/164140
[24] Bozza V.: Perturbative analysis in planetary gravitational lensing. Astron. Astrophys. 348, 311–326 (1999)
[25] Witt H.J.: Investigation of high amplification events in light curves of gravitationally lensed quasars. Astron. Astrophys. 236, 311–322 (1990)
[26] Witt H.J., Mao S.: On the minimum magnification between caustic crossings for microlensing by binary and multiple stars. Astrophys. J. 447, L105–L108 (1995) · doi:10.1086/309566
[27] Schneider P., Weiss A.: The two-point-mass lens–detailed investigation of a special asymmetric gravitational lens. Astron. Astrophys. 164, 237–259 (1986)
[28] Erdl H., Schneider P.: Classification of the multiple deflection two point-mass gravitational lens models and application of catastrophe theory in lensing. Astron. Astrophys. 268, 453–471 (1993)
[29] Dominik M.: The binary gravitational lens and its extreme cases. Astron. Astrophys. 349, 108–125 (1999)
[30] Chang K., Refsdal S.: Flux variations of QSO 0957+561 A, B and image splitting by stars near the light path. Nature 282, 561–564 (1979) · doi:10.1038/282561a0
[31] Han C.: Properties of planetary caustics in gravitational microlensing. Astrophys. J. 638, 1080–1085 (2006) · doi:10.1086/498937
[32] Chung S., Han C., Park B., Kim D., Kang S., Ryu Y., Kim K.M., Jeon Y., Lee D., Chang K., Lee W., Kang Y.H.: Properties of central caustics in planetary microlensing. Astrophys. J. 630, 535–542 (2005) · doi:10.1086/432048
[33] Park B.G., Jeon Y.B., Lee C.U., Han C.: Microlensing sensitivity to earth-mass planets in the habitable zone. Astrophys. J. 643, 1233–1238 (2006) · doi:10.1086/503187
[34] Gaudi B.S., Gould A.: Planet parameters in microlensing events. Astrophys. J. 486, 85 (1997) · doi:10.1086/304491
[35] Gaudi B.S.: Distinguishing between binary-source and planetary microlensing perturbations. Astrophys. J. 506, 533–539 (1998) · doi:10.1086/306256
[36] Gaudi B.S., Naber R.M., Sackett P.D.: Microlensing by multiple planets in high-magnification events. Astrophys. J. 502, L33 (1998) · doi:10.1086/311480
[37] Griest K., Safizadeh N.: The use of high-magnification microlensing events in discovering extrasolar planets. Astrophys. J. 500, 37–50 (1998) · doi:10.1086/305729
[38] Rattenbury N.J., Bond I.A., Skuljan J., Yock P.C.M.: Planetary microlensing at high magnification. Mon. Not. R. Astron. Soc. 335, 159–169 (2002) · doi:10.1046/j.1365-8711.2002.05607.x
[39] Han C., Chang H.Y., An J.H., Chang K.: Properties of microlensing light curve anomalies induced by multiple planets. Mon. Not. R. Astron. Soc. 328, 986–992 (2001) · doi:10.1046/j.1365-8711.2001.04973.x
[40] Han C.: Analysis of microlensing light curves induced by multiple-planet systems. Astrophys. J. 629, 1102–1109 (2005) · doi:10.1086/431143
[41] Gaudi B.S., Sackett P.D.: Detection efficiencies of microlensing data sets to stellar and planetary companions. Astrophys. J. 528, 56–73 (2000) · doi:10.1086/308161
[42] Petrou, M.: Dynamical models of spheroidal systems. Ph.D. thesis, Institute of Astronomy, University of Cambridge (1981)
[43] Griest K. et al.: Gravitational microlensing as a method of detecting disk dark matter and faint disk stars. Astrophys. J. 372, L79–L82 (1991) · doi:10.1086/186028
[44] Alcock, C., et al.: The MACHO project–a search for the dark matter in the milky-way. In: Soifer, B.T. (eds.) Sky Surveys. Protostars to Protogalaxies, Astronomical Society of the Pacific Conference Series, vol. 43, pp. 291–296 (1993)
[45] Welch, D., et al.: MACHO project home page. http://www.macho.mcmaster.ca
[46] Vidal-Madjar, A., et al.: Is our massive dark halo made of compact objects? In: Mamon, G.A., Gerbal, D. (eds.) Distribution of Matter in the Universe, pp. 388–394 (1992)
[47] Aubourg E. et al.: Evidence for gravitational microlensing by dark objects in the Galactic halo. Nature 365, 623–625 (1993) · doi:10.1038/365623a0
[48] Tisserand P., et al.: EROS microlensing survey home page. http://eros.in2p3.fr/
[49] Alcock C. et al.: Possible gravitational microlensing of a star in the Large Magellanic cloud. Nature 365, 621–623 (1993) · doi:10.1038/365621a0
[50] Udalski A., Szymański M., Kałuzny J., Kubiak M., Mateo M.: The optical gravitational lensing experiment. Acta Astron. 42, 253–284 (1992)
[51] Udalski, A., et al.: OGLE–Optical Gravitational Lensing Experiment. http://ogle.astrouw.edu.pl
[52] Udalski A., Szymański M., Kałuzny J., Kubiak M., Mateo M., Krzemiński W., Paczyński B.: The optical gravitational lensing experiment. The early warning system: real time microlensing. Acta Astron. 44, 227–234 (1994)
[53] Pratt, M.R., et al.: Real-time detection of gravitational microlensing. In: Kochanek, C.S., Hewitt, J.N. (eds.) Astrophysical Applications of Gravitational Lensing, IAU Symp. vol. 173, pp. 221–226 (1996)
[54] Alcock C. et al.: Real-time detection and multisite observations of gravitational microlensing. Astrophys. J. 463, L67–L70 (1996) · doi:10.1086/310057
[55] Albrow M. et al.: The 1995 Pilot campaign of PLANET: searching for microlensing anomalies through precise, rapid, round-the-clock monitoring. Astrophys. J. 509, 687–702 (1998) · doi:10.1086/306513
[56] Dominik M. et al.: The PLANET microlensing follow-up network: results and prospects for the detection of extra-solar planets. Planet. Space Sci. 50, 299–307 (2002) · doi:10.1016/S0032-0633(01)00126-X
[57] Dominik M., et al.: PLANET–Probing Lensing Anomalies Network. http://www.planet-legacy.org
[58] Rhie, S.H., et al.: Microlensing Planet Search project home page. http://bustard.phys.nd.edu/MPS
[59] Gould, A., et al.: Microlensing Follow-Up Network (MicroFUN). http://www.astronomy.ohio-state.edu/\(\sim\)microfun
[60] Burgdorf M.J., Bramich D.M., Dominik M., Bode M.F., Horne K.D., Steele I.A., Rattenbury N., Tsapras Y.: Exoplanet detection via microlensing with RoboNet-1.0. Planet. Space Sci. 55, 582–588 (2007) · doi:10.1016/j.pss.2006.04.036
[61] Tsapras Y. et al.: RoboNet-II: follow-up observations of microlensing events with a robotic network of telescopes. Astronon. Nachr. 330, 4–11 (2009) · doi:10.1002/asna.200811130
[62] Tsapras, Y., et al.: RoboNet-II Project Pages. http://robonet.lcogt.net
[63] Dominik, M.: Realisation of a fully-deterministic microlensing observing strategy for inferring planet populations. Astrophys. J. (2010, submitted)
[64] Dominik, M., et al.: MiNDSTEp–Microlensing Network for the Detection of Small Terrestrial Exoplanets. http://www.mindstep-science.org
[65] Elachi, C., et al.: A Road Map for the Exploration of Neighboring Planetary Systems (ExNPS). Jet propulsion laboratory report, NASA (1996)
[66] Alard C., Lupton R.H.: A method for optimal image subtraction. Astrophys. J. 503, 325–331 (1998) · doi:10.1086/305984
[67] Wozniak P.R.: Difference image analysis of the OGLE-II bulge data. I. The Method. Acta Astron. 50, 421–450 (2000)
[68] Alard C.: Image subtraction using a space-varying kernel. Astron. Astrophys. S 144, 363–370 (2000) · doi:10.1051/aas:2000214
[69] Bramich D.M.: A new algorithm for difference image analysis. Mon. Not. R. Astron. Soc. 386, L77–L81 (2008) · doi:10.1111/j.1365-2966.2008.13053.x
[70] Albrow M.D. et al.: Difference imaging photometry of blended gravitational microlensing events with a numerical kernel. Mon. Not. R. Astron. Soc. 397, 2099–2105 (2009) · doi:10.1111/j.1365-2966.2009.15098.x
[71] Horne K., Snodgrass C., Tsapras Y.: A metric and optimization scheme for microlens planet searches. Mon. Not. R. Astron. Soc. 396, 2087–2102 (2009) · doi:10.1111/j.1365-2966.2009.14470.x
[72] Han C.: Criteria in the selection of target events for planetary microlensing follow-up observations. Astrophys. J. 661, 1202–1207 (2007) · doi:10.1086/517871
[73] Udalski A.: The optical gravitational lensing experiment. Real time data analysis systems in the OGLE-III survey. Acta Astron. 53, 291–305 (2003)
[74] Dominik M. et al.: An anomaly detector with immediate feedback to hunt for planets of Earth mass and below by microlensing. Mon. Not. R. Astron. Soc. 380, 792–804 (2007) · doi:10.1111/j.1365-2966.2007.12124.x
[75] Dominik M. et al.: ARTEMiS (Automated robotic terrestrial exoplanet microlensing search): a possible expert-system based cooperative effort to hunt for planets of Earth mass and below. Astron. Nachr. 329, 248 (2008) · doi:10.1002/asna.200710928
[76] Dominik, M., et al.: ARTEMiS (Automated Robotic Terrestrial Exoplanet Microlensing Search) Hunting for planets of Earth mass and below. In: Sun, Y.S., Ferraz-Mello, S., Zhou, J.-L. (eds.) IAU Symposium, IAU Symposium, vol. 249, pp. 35–41 (2008)
[77] Snodgrass, C., Tsapras, Y., Street, R., Bramich, D., Horne, K., Dominik, M., Allan, A. The WEB-plop observation prioritisation system. In: The Manchester Microlensing Conference: the 12th International Conference and ANGLES Microlensing Workshop. PoS(GMC8)056 (2008). http://pos.sissa.it/
[78] Dominik, M.: ARTEMIS, cooperative efforts, and optimal short-term strategies. In: The Manchester Microlensing Conference: the 12th International Conference and ANGLES Microlensing Workshop (2008). PoS(GMC8)048, http://pos.sissa.it/
[79] Bennett D.P., Rhie S.H.: Detecting Earth-mass planets with gravitational microlensing. Astrophys. J. 472, 660–664 (1996) · doi:10.1086/178096
[80] Rhie S.H., Bennett D.P.: Search for Earth mass planets and dark matter too. Nucl. Phys. B Proc. Suppl. 51, 86–90 (1996) · doi:10.1016/S0920-5632(96)00487-2
[81] Muraki Y. et al.: Search for machos by the MOA collaboration. Prog. Theor. Phys. Suppl. 133, 233–246 (1999) · doi:10.1143/PTPS.133.233
[82] Bond I.A. et al.: Real-time difference imaging analysis of MOA galactic bulge observations during 2000. Mon. Not. R. Astron. Soc. 327, 868–880 (2001) · doi:10.1046/j.1365-8711.2001.04776.x
[83] Bond, I.A., et al.: MOA–Microlensing Observations in Astrophysics. http://www.phys.canterbury.ac.nz/moa/
[84] Gould A., Loeb A.: Discovering planetary systems through gravitational microlenses. Astrophys. J. 396, 104–114 (1992) · doi:10.1086/171700
[85] Kubas D. et al.: Limits on additional planetary companions to OGLE 2005-BLG-390L. Astron. Astrophys. 483, 317–324 (2008) · doi:10.1051/0004-6361:20077449
[86] Dong S. et al.: Microlensing event MOA-2007-BLG-400: exhuming the buried signature of a cool, Jovian-Mass planet. Astrophys. J. 698, 1826–1837 (2009) · doi:10.1088/0004-637X/698/2/1826
[87] Dominik M., Hirshfeld A.C.: The binary nature of an observed dark galactic object. Astron. Astrophys. 289, L31–L33 (1994)
[88] Dominik M., Hirshfeld A.C.: Evidence for a binary lens in the MACHO LMC No. 1 microlensing event. Astron. Astrophys. 313, 841–850 (1996)
[89] Alcock C. et al.: Binary microlensing events from the MACHO project. Astrophys. J. 541, 270–297 (2000) · doi:10.1086/309393
[90] Mao S., Di Stefano R.: Interpretation of gravitational microlensing by binary systems. Astrophys. J. 440, 22–27 (1995) · doi:10.1086/175244
[91] Dominik M.: Ambiguities in fits of observed binary lens galactic microlensing events. Astron. Astrophys. 341, 943–953 (1999)
[92] Albrow M.D. et al.: A short, nonplanetary, microlensing anomaly: observations and light-curve analysis of MACHO 99-BLG-47. Astrophys. J. 572, 1031–1040 (2002) · doi:10.1086/340310
[93] Gaudi B.S., Han C.: The many possible interpretations of microlensing event OGLE 2002-BLG-055. Astrophys. J. 611, 528–536 (2004) · doi:10.1086/421971
[94] Beaulieu J.P. et al.: Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing. Nature 439, 437–440 (2006) · doi:10.1038/nature04441
[95] Bond I.A. et al.: OGLE 2003-BLG-235/MOA 2003-BLG-53: a planetary microlensing event. Astrophys. J. 606, L155–L158 (2004) · doi:10.1086/420928
[96] Dominik M., Horne K., Bode M.F.: The first cool rocky/icy exoplanet. Astron. Geophys. 47, 3.25–3.30 (2006) · doi:10.1111/j.1468-4004.2006.47325.x
[97] Rivera E.J., Lissauer J.J., Butler R.P., Marcy G.W., Vogt S.S., Fischer D.A., Brown T.M., Laughlin G., Henry G.W.: A 7.5 \({M_\oplus}\) planet orbiting the nearby star, GJ 876. Astrophys. J. 634, 625–640 (2005) · doi:10.1086/491669
[98] Udalski A. et al.: A Jovian-Mass planet in microlensing event OGLE-2005-BLG-071. Astrophys. J. 628, L109–L112 (2005) · doi:10.1086/432795
[99] Dong S. et al.: OGLE-2005-BLG-071Lb, the most massive M dwarf planetary companion?. Astrophys. J. 695, 970–987 (2009) · doi:10.1088/0004-637X/695/2/970
[100] Gaudi B.S. et al.: Discovery of a Jupiter/Saturn analog with gravitational microlensing. Science 319, 927–930 (2008) · doi:10.1126/science.1151947
[101] Bennett, D.P., et al.: Masses and Orbital Constraints for the OGLE-2006-BLG-109Lb,c Jupiter/Saturn Analog Planetary System. Preprint arXiv:0911.2706, Astrophys. J. (2009, submitted)
[102] Rhie S.H. et al.: On planetary companions to the MACHO 98-BLG-35 microlens star. Astrophys. J. 533, 378–391 (2000) · doi:10.1086/308634
[103] Bond I.A. et al.: Study by MOA of extrasolar planets in gravitational microlensing events of high magnification. Mon. Not. R. Astron. Soc. 333, 71–83 (2002) · doi:10.1046/j.1365-8711.2002.05380.x
[104] Sackett, P.D., et al.: PLANET team observations of microlensing event MACHO 98-BLG-35. http://www.planet-legacy.org/MB9835.news.html
[105] Gaudi B.S. et al.: Microlensing constraints on the frequency of Jupiter-mass companions: analysis of 5 Years of PLANET photometry. Astrophys. J. 566, 463–499 (2002) · doi:10.1086/337987
[106] Bennett, D.P., et al.: Planetary microlensing from the MACHO Project. In: Soderblom, D. (ed.) Planets Beyond the Solar System and the Next Generation of Space Missions, Astronomical Society of the Pacific Conference Series, vol. 119, pp. 95–99 (1997)
[107] Bennett D.P. et al.: Discovery of a planet orbiting a binary star system from gravitational microlensing. Nature 402, 57–59 (1999) · doi:10.1038/46990
[108] Albrow M.D. et al.: Detection of rotation in a binary microlens: PLANET photometry of MACHO 97-BLG-41. Astrophys. J. 534, 894–906 (2000) · doi:10.1086/308798
[109] Jaroszyński M.: Binary lenses in OGLE-II 1997–1999 Database. A preliminary study. Acta Astron. 52, 39–60 (2002)
[110] Jaroszyński M., Paczyński B.: A possible planetary event OGLE-2002-BLG-055. Acta Astron. 52, 361–367 (2002)
[111] Snodgrass C., Horne K., Tsapras Y.: The abundance of Galactic planets from OGLE-III 2002 microlensing data. Mon. Not. R. Astron. Soc. 351, 967–975 (2004) · doi:10.1111/j.1365-2966.2004.07839.x
[112] Gaudi B.S., Han C.: The many possible interpretations of microlensing event OGLE 2002-BLG-055. Astrophys. J. 611, 528–536 (2004) · doi:10.1086/421971
[113] Bennett D.P., Anderson J., Bond I.A., Udalski A., Gould A.: Identification of the OGLE-2003-BLG-235/MOA-2003-BLG-53 planetary host star. Astrophys. J. 647, L171–L174 (2006) · doi:10.1086/507585
[114] Jaroszyński M., Udalski A., Kubiak M., Szymański M., Pietrzyński G., Soszyński I., \.Zebrun K., Szewczyk O., Wyrzykowski Ł.: Binary lenses in OGLE-III EWS. Database seasons 2002–2003. Acta Astron. 54, 103–128 (2004) · doi:10.1016/S0094-5765(02)00285-0
[115] Jaroszyński M., Skowron J., Udalski A., Kubiak M., Szymański M.K., Pietrzyński G., Soszyński I., \.Zebrun K., Szewczyk O., Wyrzykowski Ł.: Binary lenses in OGLE-III EWS. Database season 2004. Acta Astron. 56, 307–332 (2006)
[116] Skowron J., Jaroszyński M., Udalski A., Kubiak M., Szymański M.K., Pietrzyński G., Soszyński I., Szewczyk O., Wyrzykowski Ł., Ulaczyk K.: Binary lenses in OGLE III EWS. Database season 2005. Acta Astron. 57, 281–299 (2007)
[117] Gould A. et al.: Microlens OGLE-2005-BLG-169 implies that cool Neptune-like planets are common. Astrophys. J. 644, L37–L40 (2006) · doi:10.1086/505421
[118] Bennett D.P. et al.: A low-mass planet with a possible sub-stellar-mass host in microlensing event MOA-2007-BLG-192. Astrophys. J. 684, 663–683 (2008) · doi:10.1086/589940
[119] Dong S. et al.: Microlensing event MOA-2007-BLG-400: exhuming the buried signature of a cool, Jovian-mass planet. Astrophys. J. 698, 1826–1837 (2009) · doi:10.1088/0004-637X/698/2/1826
[120] Han C., Kim D.: Planetary lensing signals of high-magnification events under the severe finite-source effect. Astrophys. J. 693, 1835–1839 (2009) · doi:10.1088/0004-637X/693/2/1835
[121] Sumi, T., et al.: A Cold Neptune-Mass Planet OGLE-2007-BLG-368Lb: Cold Neptunes Are Common. Preprint arXiv:0912.1171, Astrophys. J. (2009, accepted)
[122] Janczak, J., et al.: Sub-Saturn Planet MOA-2008-BLG-310Lb: Likely To Be In The Galactic Bulge. Preprint arXiv:0908.0529, Astrophys. J. (2009, submitted)
[123] Ida S., Lin D.N.C.: Toward a deterministic model of planetary formation. III. Mass distribution of short-period planets around stars of various masses. Astrophys. J. 626, 1045–1060 (2005) · doi:10.1086/429953
[124] Udry S., Santos N.C.: Statistical properties of exoplanets. Ann. Rev. Astron. Astrophys. 45, 397–439 (2007) · doi:10.1146/annurev.astro.45.051806.110529
[125] Albrow M.D. et al.: Limits on the abundance of galactic planets from 5 years of PLANET observations. Astrophys. J. 556, L113–L116 (2001) · doi:10.1086/323141
[126] Dominik, M., et al.: ARTEMiS–Automated Robotic Terrestrial Exoplanet Microlensing Search. http://www.artemis-uk.org
[127] Steele, I.A., Naylor, T., Allan, A., Etherton, J., Mottram, C.J.: eSTAR: a distributed telescope network. In: Kibrick, R.I. (ed.) Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, vol. 4845, pp. 13–24 (2002)
[128] Hessman F.V.: Prospects for a global heterogeneous telescope network (HTN). Astron. Nachr. 327, 763–766 (2006) · doi:10.1002/asna.200610628
[129] Allan A., Naylor T., Saunders E.S.: The eSTAR network–agent architectures for astronomy. Astron. Nachr. 327, 767–770 (2006) · doi:10.1002/asna.200610629
[130] Sackett, P.D.: Planet Detection via Microlensing. Appendix C of the Final Report of the ESO Working Group on the Detection of Extrasolar Planets (ESO Document SPG-VLTI-97/002), preprint astro-ph/9709269 (1997)
[131] Han C.: Expansion of planet detection methods in next-generation microlensing surveys. Astrophys. J. 670, 1361–1366 (2007) · doi:10.1086/522024
[132] Han, C., Park, B.G.: KMTNet–Korean Microlensing Telescope Network. http://astroph.chungbuk.ac.kr/\(\sim\)cheongho/Talks/paris2009.pdf
[133] Bennett D.P., Rhie S.H.: Simulation of a space-based microlensing survey for terrestrial extrasolar planets. Astrophys. J. 574, 985–1003 (2002) · doi:10.1086/340977
[134] Bennett, D.P., et al.: The Galactic Exoplanet Survey Telescope (GEST). In: Blades, J.C., Siegmund, O.H.W. (eds.) Future EUV/UV and Visible Planet. Space Sci. Astrophysics Missions and Instrumentation. Proc. SPIE, vol. 4854, p. 141 (2003)
[135] Grundahl F., Christensen-Dalsgaard J., Arentoft T., Frandsen S., Kjeldsen H., Jørgensen U.G., Kjærgaard P.: Composing the verses for SONG. Commun. Asteroseismol. 158, 345–349 (2009)
[136] Grundahl, F., et al.: SONG–stellar observations network group. http://astro.phys.au.dk/SONG
[137] Høg E., Novikov I.D., Polnarev, A.G.: MACHO photometry and astrometry. Astron. Astrophys. 294, 287–294 (1995)
[138] Miyamoto M., Yoshii Y.: Astrometry for determining the MACHO mass and trajectory. Astron. J. 110, 1427–1432 (1995) · doi:10.1086/117616
[139] Hardy S.J., Walker M.A.: Parallax effects in binary microlensing events. Mon. Not. R. Astron. Soc. 276, L79–L82 (1995)
[140] Dominik M., Sahu K.C.: Astrometric microlensing of stars. Astrophys. J. 534, 213–226 (2000) · doi:10.1086/308716
[141] Safizadeh N., Dalal N., Griest K.: Astrometric microlensing as a method of discovering and characterizing extrasolar planets. Astrophys. J. 522, 512–517 (1999) · doi:10.1086/307628
[142] Dominik, M.: Astrometric vs. Photometric Microlensing. In: Brainerd, T.G., Kochanek, C.S. (eds.) Gravitational Lensing: Recent Progress and Future Goals, Astronomical Society of the Pacific Conference Series, vol. 237, pp. 259–260 (2001)
[143] Han C., Lee C.: Properties of planet-induced deviations in the astrometric microlensing centroid shift trajectory. Mon. Not. R. Astron. Soc. 329, 163–174 (2002) · doi:10.1046/j.1365-8711.2002.04976.x
[144] Gould A., Han C.: Astrometric resolution of severely degenerate binary microlensing events. Astrophys. J. 538, 653–656 (2000) · doi:10.1086/309180
[145] Han C.: Astrometric method for breaking the photometric degeneracy between binary-source and planetary microlensing perturbations. Astrophys. J. 564, 1015–1018 (2002) · doi:10.1086/324338
[146] Gould A., Salim S.: Photometric microlens parallaxes with the space science. Interferometry mission planet. Astrophys. J. 524, 794–804 (1999) · doi:10.1086/307843
[147] Lazorenko P.F., Lazorenko G.A.: Filtration of atmospheric noise in narrow-field astrometry with very large telescopes. Astron. Astrophys. 427, 1127–1143 (2004) · doi:10.1051/0004-6361:20041481
[148] Lazorenko P.F., Mayor M., Dominik M., Pepe F., Segransan D., Udry S.: Precision multi-epoch astrometry with VLT cameras FORS1/2. Astron. Astrophys. 505, 903–918 (2009) · doi:10.1051/0004-6361/200912026
[149] Perryman M.A.C., de Boer K.S., Gilmore G., Høg E., Lattanzi M.G., Lindegren L., Luri X., Mignard F., Pace O., de Zeeuw P.T.: GAIA: composition, formation and evolution of the galaxy. Astron. Astrophys. 369, 339–363 (2001) · doi:10.1051/0004-6361:20010085
[150] Perryman, M.A.C., et al.: ESA–Space Science–Gaia overview. http://www.esa.int/science/gaia
[151] Wyrzykowski, Ł., et al. Gaia science alerts working group. http://www.ast.cam.ac.uk/research/gsawg/
[152] Darnley M.J. et al.: The Angstrom project alert system: real-time detection of extragalactic microlensing. Astrophys. J. 661, L45–L48 (2007) · doi:10.1086/518600
[153] Dominik, M.: New projects for pixel-lensing: observation of globular clusters and anomalies in M31 events. In: Marmo, G., Rubano, C., Scudellaro, P. (eds.) General Relativity, Cosmology, Gravitational Lensing, p. 87. Bibliopolis, Napoli (2001)
[154] Graff D.S., Gaudi B.S.: Direct detection of large close-in planets around the source stars of caustic-crossing microlensing events. Astrophys. J. 538, L133–L136 (2000) · doi:10.1086/312811
[155] Gaudi B.S., Chang H., Han C.: Probing structures of distant extrasolar planets with microlensing. Astrophys. J. 586, 527–539 (2003) · doi:10.1086/367539
[156] Rahvar S., Dominik M.: Planetary microlensing signals from the orbital motion of the source star around the common barycentre. Mon. Not. R. Astron. Soc. 392, 1193–1204 (2009) · doi:10.1111/j.1365-2966.2008.14120.x
[157] Yee J.C. et al.: Extreme magnification microlensing event OGLE-2008-BLG-279: strong limits on planetary companions to the lens star. Astrophys. J. 703, 2082–2090 (2009) · doi:10.1088/0004-637X/703/2/2082
[158] Han C.: Microlensing detections of moons of exoplanets. Astrophys. J. 684, 684–690 (2008) · doi:10.1086/590331
[159] Paczyński B.: Gravitational microlensing in the local group. Ann. Rev. Astron. Astrophys. 34, 419–460 (1996) · doi:10.1146/annurev.astro.34.1.419
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.