×

zbMATH — the first resource for mathematics

SINGINT: automatic numerical integration of singular integrands. (English) Zbl 1196.65214
Summary: We explore the combination of deterministic and Monte Carlo methods to facilitate efficient automatic numerical computation of multidimensional integrals with singular integrands. Two adaptive algorithms are presented that employ recursion and are runtime and memory optimized, respectively. SINGINT, a C implementation of the algorithms, is introduced and its utilization in the calculation of particle scattering amplitudes is exemplified.
MSC:
65Y99 Computer aspects of numerical algorithms
Software:
DECUHR; SINGINT
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Piessens, R., Quadpack, (1983), Springer-Verlag
[2] Press, W.H., Numerical recipes, (1992), Cambridge University Press · Zbl 0778.65003
[3] Espelid, T.O.; Genz, A.; Singstad, K.; Espelid, T.O.; Lyness, J.N., Numerical algorithms, J. comp. appl. math., Math. comp., 30, 1, (1976), and references therein
[4] James, F.; Hoogland, J.; Kleiss, R., Comp. phys. comm., 99, 180, (1997)
[5] Bratley, P.; Fox, B.L.; Niederreiter, H., ACM trans. model. comp. sim., 2, 195, (1992)
[6] Berntsen, J.; Espelid, T.O.; Genz, A., ACM trans. math. software, ACM trans. math. software, 17, 452, (1991)
[7] T. Binoth, G. Heinrich, N. Kauer, Preprint Edinburgh 2002/16 (2002), arXiv:hep-ph/0210023
[8] Lepage, G.P., J. comput. phys., 27, 192, (1978), Preprint CLNS-80/447 (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.