×

zbMATH — the first resource for mathematics

Face: a tool for three body Faddeev calculations with core excitation. (English) Zbl 1196.70004
Comput. Phys. Commun. 161, No. 1-2, 87-107 (2004); erratum ibid. 170, No. 3, 296-297 (2005).
Summary: FaCE is a self contained program, with namelist input, that solves the three body Faddeev equations. It enables the inclusion of excitation of one of the three bodies, whilst the other two remain inert. It is particularly useful for obtaining the binding energies and bound state structure compositions of light exotic nuclei treated as three-body systems, given the three effective two body interactions. A large variety of forms for these interactions may be defined, and supersymmetric transformations of these potentials may be calculated whenever two body states need to be removed due to Pauli blocking.

MSC:
70-04 Software, source code, etc. for problems pertaining to mechanics of particles and systems
70F07 Three-body problems
Software:
FaCE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Nunes, F.M.; Thompson, I.J.; Johnson, R.C., Nucl. phys. A, 596, 171, (1996)
[2] Ridikas, D., Nucl. phys. A, 628, 363, (1998)
[3] Zhukov, M.V.; Danilin, B.V.; Fedorov, D.V.; Bang, J.M.; Thompson, I.J.; Vaagen, J.S., Phys. rep., 231, 151, (1993)
[4] Thompson, I.J.; Zhukov, M.V., Phys. rev. C, 49, 1904, (1994)
[5] Meister, M., Nucl. phys. A, 700, 3, (2002)
[6] Nunes, F.M.; Christley, J.A.; Thompson, I.J.; Johnson, R.C.; Efros, V.D., Nucl. phys. A, 609, 43, (1996)
[7] Al-Khalili, J.S.; Nunes, F.M., Topical rev. J. phys. G., 29, R89, (2003)
[8] Al-Khalili, J.S.; Tostevin, J.A., Phys. rev. lett., 76, 3903, (1996)
[9] Fortier, S.; Winfield, J., Phys. lett. B, Nucl. phys. A, 683, 48, (2001)
[10] Crespo, R.; Thompson, I.J.; Crespo, R.; Thompson, I.J.; Korsheninnikov, A., Nucl. phys. A, Phys. rev. C, 66, 021002R, (2002)
[11] Faddeev, L.D., Jetp, 39, 1459, (1960)
[12] Gronwall, T.H., Phys. rev., 51, 655, (1937)
[13] Delves, L.M., Nucl. phys., 20, 268, (1962)
[14] Raynal, J.; Revai, J., Nuovo cimento A, 68, 612, (1970)
[15] Brink, D.M.; Satchler, G.R., Angular momentum, (1994), Clarendon Oxford · Zbl 0137.45403
[16] Danilin, B.V.; Thompson, I.J.; Zhukov, M.V.; Vaagen, J.S., Nucl. phys. A, 632, 383, (1998)
[17] Thompson, I.J.; Danilin, B.V.; Efros, V.D.; Vaagen, J.S.; Bang, J.M.; Zhukov, M.V., Phys. rev. C, 61, 24318, (2000)
[18] Sparenberg, J.-M.; Baye, D., Phys. rev. lett., 79, 3802, (1997)
[19] Feshbach, H., Ann. phys., 5, 357, (1958)
[20] I.J. Thompson, Program , 2002. Users manual available from the author
[21] Grigorenko, L.V.; Danilin, B.V.; Efros, V.D.; Shul’gina, N.B.; Zhukov, M.V.; Grigorenko, L.V.; Danilin, B.V.; Efros, V.D.; Shul’gina, N.B.; Zhukov, M.V., Phys. rev. C, Phys. rev. C, 60, 044312, (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.