WATERWAVES: wave particles dynamics on a complex triatomic potential. (English) Zbl 1196.76009

Summary: The WATERWAVES program suite performs complex scattering calculations by propagating a wave packet in a complex, full-dimensional potential for non-rotating \((J=0)\) but vibrating triatomic molecules. Potential energy and decay probability surfaces must be provided. Expectation values of geometric quantities can be calculated, which are useful for following the wave packet motion. The programs use a local complex potential approximation (LCP) for the Hamiltonian and Jacobi coordinates. The bottleneck of the calculation is the application of each term of the Hamiltonian to the wave packet. To solve this problem the programs use a different representation for each term: normalized associated Legendre polynomials as a functional basis for the angular kinetic term and an evenly spaced grid for the radial kinetic term yielding a fully point-wise representation of the wave functions. The potential term is treated using an efficient Discrete Variable Representation (DVR) being diagonal in the coordinate representation. The radial kinetic term uses a fast Fourier transform (FFT) to obtain an operator which is diagonal in the momentum space. To avoid artificial reflection at the boundaries of the grid a complex absorbing potential is included for calculating continuum quantities. Asymptotic analysis is performed to obtain scattering observables such as cross sections and other dynamical properties.


76-04 Software, source code, etc. for problems pertaining to fluid mechanics
76M28 Particle methods and lattice-gas methods


Full Text: DOI


[1] Balakrishnan, N.; Kalyanaram, C.; Sathyamurthy, N., Phys. rep., 280, 79, (1997)
[2] Gertitschke, P.L.; Domcke, W., Phys. rev. A, 47, 1031, (1993)
[3] Tannor, D.J.; Rice, S.A., Adv. chem. phys., 70, 441, (1998)
[4] Zhang, D.H.; Zhang, J.Z.H., J. chem. phys., 101, 3671, (1994)
[5] Inguscio, M.; Stringari, S.; Wieman, C., Bose – einstein condensation in atomic gases, (1999), IOS Press Amsterdam
[6] Zewail, A.H., Femtochemistry, (1994), World Scientific Singapore
[7] Bardsley, J.N., J. phys. B, 1, 349, (1966)
[8] Morgan, L.A.; Burke, P.G.; Gillan, C.J., J. phys. B, 23, 99, (1990)
[9] Melton, C.E., J. chem. phys., 57, 4218, (1972)
[10] Haxton, D.J.; Zhang, Z.; Meyer, H.D.; Rescigno, T.N.; McCurdy, C.W., Phys. rev. A, 69, 062714, (2004)
[11] Feshbach, H., Ann. phys., 19, 287, (1962)
[12] LeDourneuf, M.; Schneider, B.I.; Burke, P.G., J. phys. B: at. mol. opt. phys., 12, L365, (1979)
[13] Gorfinkiel, J.D.; Morgan, L.A.; Tennyson, J., J. phys. B: at. mol. opt. phys., 35, 543, (2002)
[14] Haxton, D.J.; Zhang, Z.; Rescigno, T.N.; McCurdy, C.W., Phys. rev. A, 69, 062713, (2004)
[15] P. Defazio, PhD Thesis, University of Siena, 2004
[16] Beck, H.; Jckle, A.; Worth, G.A.; Meyer, H.D., Phys. rep., 324, 1, (2000)
[17] Wigner, E., Ann. math., 40, 149, (1939)
[18] Petrongolo, C., J. chem. phys., 89, 1297, (1988)
[19] Balint-Kurti, G.G.; Gonzalez, A.I.; Goldfield, E.M.; Gray, S.K., Faraday discuss., 110, 169-183, (1998)
[20] Abramowitz, M.; Stegun, I.A., Handbook of mathematical functions, (1972), National Bureau of Standards Washington DC · Zbl 0515.33001
[21] Light, J.C.; Hamilton, I.P.; Lill, J.C., J. chem. phys., 82, 1400, (1985)
[22] Baćić, Z.; Light, J.C., Annu. rev. phys. chem., 40, 469, (1989)
[23] Gray, S.K., J. chem. phys., 96, 6543, (1992)
[24] Gray, S.K.; Balint-Kurti, G.G., J. chem. phys., 108, 950, (1998)
[25] Tal-Ezer, H.; Kosloff, R., J. comput. phys., 81, 3967, (1984)
[26] Mandelshtam, V.A.; Taylor, H.S., J. chem. phys., 102, 7390, (1995)
[27] Mandelshtam, V.A.; Taylor, H.S., J. chem. phys., 103, 2903, (1995)
[28] Tennyson, J.; Sutcliffe, B.T., J. chem. phys., 77, 4061, (1982)
[29] Domcke, W., Phys. rep. A, 208, 97, (1991)
[30] Tennyson, J.; Kostin, M.A.; Barletta, P.; Harris, G.J.; Polyansky, O.L.; Ramanlal, J.; Zobov, N.F., Comput. phys. comm., 163, 85, (2004)
[31] Manolopoulos, D.E., J. chem. phys., 117, 9552, (2002)
[32] Migdley, S.; Wang, J.B., Phys. rev. E, 61, 920, (2000)
[33] Muga, J.G.; Palao, J.P.; Navarro, B.; Egusquiza, I.L., Phys. rep., 395, 357, (2004)
[34] Wang, J.B.; Scholz, T., Phys. rev. A, 57, 3554, (1998)
[35] Balint-Kurti, G.G.; Gray, S.K., J. chem. soc. Faraday trans., 86, 1741, (1990)
[38] de Boor, C., A practical guide to splines, (1978), Springer New York · Zbl 0406.41003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.