×

zbMATH — the first resource for mathematics

Resolution of singularities for multi-loop integrals. (English) Zbl 1196.81010
Summary: We report on a program for the numerical evaluation of divergent multi-loop integrals. The program is based on iterated sector decomposition. We improve the original algorithm of Binoth and Heinrich such that the program is guaranteed to terminate. The program can be used to compute numerically the Laurent expansion of divergent multi-loop integrals regulated by dimensional regularisation. The symbolic and the numerical steps of the algorithm are combined into one program.

MSC:
81-04 Software, source code, etc. for problems pertaining to quantum theory
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
Software:
BASES/SPRING; GiNaC
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hepp, K., Commun. math. phys., 2, 301, (1966)
[2] Roth, M.; Denner, A., Nucl. phys. B, 479, 495, (1996)
[3] Binoth, T.; Heinrich, G., Nucl. phys. B, 585, 741, (2000)
[4] Binoth, T.; Heinrich, G., Nucl. phys. B, 680, 375, (2004)
[5] Laporta, S., Phys. lett. B, 504, 188, (2001)
[6] Laporta, S., Int. J. mod. phys. A, 15, 5087, (2000)
[7] Laporta, S., Phys. lett. B, 523, 95, (2001)
[8] Laporta, S., Phys. lett. B, 549, 115, (2002)
[9] Czakon, M., Comput. phys. comm., 175, 559, (2006)
[10] Anastasiou, C.; Daleo, A., Jhep, 0610, 031, (2006)
[11] Gehrmann-De Ridder, A.; Gehrmann, T.; Heinrich, G., Nucl. phys. B, 682, 265, (2004)
[12] Binoth, T.; Heinrich, G., Nucl. phys. B, 693, 134, (2004)
[13] Heinrich, G., Eur. phys. J. C, 48, 25, (2006)
[14] Lazopoulos, A.; Melnikov, K.; Petriello, F., Phys. rev. D, 76, 014001, (2007)
[15] Anastasiou, C.; Beerli, S.; Daleo, A., Jhep, 0705, 071, (2007)
[16] Bloch, S.; Esnault, H.; Kreimer, D., Commun. math. phys., 267, 181, (2006)
[17] Hironaka, H., Ann. math., 79, 109, (1964)
[18] Spivakovsky, M., Progr. math., 36, 419, (1983)
[19] Villamayor, O., Ann. sci. ecole norm. sup., 22, 1, (1989)
[20] Villamayor, O., Ann. sci. ecole norm. sup., 25, 629, (1992)
[21] Bierstone, E.; Milman, P., Invent. math., 128, 207, (1997)
[22] Encinas, S.; Villamayor, O., Acta math., 181, 109, (1998)
[23] Encinas, S.; Villamayor, O., Progr. math., 181, 147, (2000)
[24] Encinas, S.; Hauser, H., Comment. math. helv., 77, 821, (2002)
[25] Bravo, A.; Villamayor, Proc. London math. soc., 86, 327, (2003)
[26] Hauser, H., Bull. amer. math. soc., 40, 323, (2003)
[27] D. Zeillinger, PhD thesis, Univ. Innsbruck, 2005
[28] Zeillinger, D., Enseign. math., 52, 143, (2006)
[29] Bauer, C.; Frink, A.; Kreckel, R., J. symbolic comput., 33, 1, (2002)
[30] Galassi, M.
[31] Kawabata, S., Comput. phys. comm., 88, 309, (1995)
[32] Hahn, T., Comput. phys. comm., 168, 78, (2005)
[33] Lepage, G.P., J. comput. phys., 27, 192, (1978)
[34] Lepage, G.P.
[35] Bierenbaum, I.; Weinzierl, S., Eur. phys. J. C, 32, 67, (2003)
[36] Smirnov, V.A., Phys. lett. B, 460, 397, (1999)
[37] Tausk, J.B., Phys. lett. B, 469, 225, (1999)
[38] van Heersch, D., (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.