×

zbMATH — the first resource for mathematics

KANTBP 2.0: new version of a program for computing energy levels, reaction matrix and radial wave functions in the coupled-channel hyperspherical adiabatic approach. (English) Zbl 1197.81008
Summary: A FORTRAN 77 program for calculating energy values, reaction matrix and corresponding radial wave functions in a coupled-channel approximation of the hyperspherical adiabatic approach is presented. In this approach, a multi-dimensional Schrödinger equation is reduced to a system of the coupled second-order ordinary differential equations on a finite interval with homogeneous boundary conditions: (i) the Dirichlet, Neumann and third type at the left and right boundary points for continuous spectrum problem, (ii) the Dirichlet and Neumann type conditions at left boundary point and Dirichlet, Neumann and third type at the right boundary point for the discrete spectrum problem. The resulting system of radial equations containing the potential matrix elements and first-derivative coupling terms is solved using high-order accuracy approximations of the finite element method. As a test desk, the program is applied to the calculation of the reaction matrix and radial wave functions for 3D-model of a hydrogen-like atom in a homogeneous magnetic field. This version extends the previous version 1.0 of the KANTBP program [O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y. Larsen, S.I. Vinitsky, Comput. Phys. Commun. 177, No. 8, 649–675 (2007; Zbl 1196.81283)].

MSC:
81-04 Software, source code, etc. for problems pertaining to quantum theory
81V45 Atomic physics
Software:
KANTBP; KANTBP 2.0
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chuluunbaatar, O.; Gusev, A.A.; Abrashkevich, A.G.; Amaya-Tapia, A.; Kaschiev, M.S.; Larsen, S.Y.; Vinitsky, S.I., Comput. phys. comm., 177, 649-675, (2007)
[2] Fock, V.A., Izv. akad. nauk SSSR, ser. fiz., 18, 161-172, (1954)
[3] A.M. Ermolaev, Quantum theory, Part 1, in: Proc. of 8th UNESCO Internat. School of Physics, St. Petersburg, 1998, pp. 298-315
[4] Kadomtsev, M.B.; Vinitsky, S.I., J. phys. B, 20, 5723-5736, (1987)
[5] Abrashkevich, A.G.; Abrashkevich, D.G.; Puzynin, I.V.; Vinitsky, S.I., J. phys. B, 24, 1615-1638, (1991)
[6] Vinitskii, S.I.; Ponomarev, L.I., Sov. J. part. phys., 13, 557-587, (1982)
[7] Vinitskii, S.I.; Melezhik, V.S.; Ponomarev, L.I., Sov. J. nucl. phys., 36, 272-276, (1982)
[8] Amaya-Tapia, A.; Larsen, S.Y.; Popiel, J.J., Few-body systems, 23, 87-109, (1997)
[9] Pupyshev, V.V., Phys. part. nucl., 33, 435-472, (2002)
[10] Assenbaum, H.J.; Langanke, K.; Rolfs, C., Z. phys. A, 327, 461-468, (1987)
[11] Bracci, L.; Fiorentini, G.; Melezhik, V.S.; Mezzorani, G.; Pasini, P., Phys. lett. A, 153, 456-460, (1991)
[12] Melezhik, V., Nucl. phys. A, 550, 223-234, (1992)
[13] Bystritskii, V., Physics of atomic nuclei, 64, 855-860, (2001)
[14] Demkov, Yu.N.; Meyer, J.D., Eur. phys. J. B, 42, 361-365, (2004)
[15] Krassovitskiy, P.M.; Takibaev, N.Zh., Bull. Russian acad. sci. phys., 70, 815-818, (2006)
[16] Chuluunbaatar, O.; Gusev, A.A.; Derbov, V.L.; Kaschiev, M.S.; Melnikov, L.A.; Serov, V.V.; Vinitsky, S.I., J. phys. A, 40, 11485-11524, (2007) · Zbl 1122.81327
[17] Sarkisyan, H.A., Mod. phys. lett. B, 16, 835-841, (2002)
[18] Voss, H., Comput. phys. comm., 174, 441-446, (2006)
[19] Wang, W.; Hwang, T.-M.; Jang, J.-C., Comput. phys. comm., 174, 371-385, (2006)
[20] Kim, J.I.; Melezhik, V.S.; Schmelcher, P., Phys. rev. lett., 97, (2006), 193203-1-4
[21] Kantorovich, L.V.; Krylov, V.I., Approximate methods of higher analysis, (1964), Wiley New York · Zbl 0040.21503
[22] Chuluunbaatar, O.; Gusev, A.A.; Gerdt, V.P.; Rostovtsev, V.A.; Vinitsky, S.I.; Abrashkevich, A.G.; Kaschiev, M.S.; Serov, V.V., Comput. phys. comm., 178, 301-330, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.