×

zbMATH — the first resource for mathematics

D0C: A code to calculate scalar one-loop four-point integrals with complex masses. (English) Zbl 1197.81009
Summary: We present a new Fortran code to calculate the scalar one-loop four-point integral with complex internal masses, based on the method of ’t Hooft and Veltman. The code is applicable when the external momenta fulfill a certain physical condition. In particular it holds if one of the external momenta or a sum of them is timelike or lightlike and therefore covers all physical processes at colliders. All the special cases related to massless external particles are treated separately. Some technical issues related to numerical evaluation and Landau singularities are discussed.

MSC:
81-04 Software, source code, etc. for problems pertaining to quantum theory
81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Landau, L.D., Nucl. phys., 13, 181, (1959)
[2] Eden, R., The analytic S-matrix, (1966), Cambridge University Press Cambridge · Zbl 0139.46204
[3] Boudjema, F.; Ninh, L.D., Phys. rev. D, 78, 093005, (2008)
[4] Goria, S.; Passarino, G., Nucl. phys. (proc. suppl.), 183, 320, (2008)
[5] Actis, S., Phys. lett. B, 669, 62, (2008)
[6] Ninh, L.D., (2008), PhD thesis
[7] ’t Hooft, G.; Veltman, M.J.G., Nucl. phys. B, 153, 365, (1979)
[8] van Oldenborgh, G.J., Comput. phys. comm., 66, 1, (1991)
[9] van Oldenborgh, G.J.; Vermaseren, J.A.M., Z. phys. C, 46, 425, (1990)
[10] Hahn, T.; Perez-Victoria, M., Comput. phys. comm., 118, 153, (1999)
[11] Hahn, T.; Rauch, M., Nucl. phys. (proc. suppl.), 157, 236, (2006)
[12] Denner, A.; Nierste, U.; Scharf, R., Nucl. phys. B, 367, 637, (1991)
[13] Kawabata, S., Comput. phys. comm., 88, 309, (1995)
[14] Binosi, D.; Theussl, L., Comput. phys. comm., 161, 76, (2004)
[15] Coleman, S.; Norton, R.E., Nuovo cim., 38, 438, (1965)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.