Discontinuous feedback in nonlinear control: stabilization under persistent disturbances. (English. Russian original) Zbl 1201.93050

Proc. Steklov Inst. Math. 268, 222-241 (2010); translation from Trudy Mat. Inst. Steklova 268, 231-251 (2010).
Summary: We consider a nonlinear control system which, under persistently acting disturbances, can be asymptotically driven to the origin by some non-anticipating strategy with infinite memory (such a strategy determines a value of control \(u(t)\) at moment \(t\) using complete information on the prehistory of disturbances until moment \(t\)). We demonstrate that this property is equivalent to the existence of a robust stabilizing (possibly discontinuous) feedback \(k(x)\).


93B52 Feedback control
93D15 Stabilization of systems by feedback
93C73 Perturbations in control/observation systems
93C10 Nonlinear systems in control theory
Full Text: DOI


[1] Z. Artstein, ”Stabilization with Relaxed Controls,” Nonlinear Anal., Theory Methods Appl. 7, 1163–1173 (1983). · Zbl 0525.93053
[2] R. W. Brockett, ”Asymptotic Stability and Feedback Stabilization,” in Differential Geometric Control Theory, Ed. by R. W. Brockett, R. S. Millman, and H. J. Sussmann (Birkhäuser, Boston, 1983), Prog. Math. 27, pp. 181–191. · Zbl 0528.93051
[3] F. H. Clarke, Optimization and Nonsmooth Analysis (Wiley-Intersci., New York, 1983); 3rd ed. (SIAM, Philadelphia, 1990), Classics Appl. Math. 5. · Zbl 0582.49001
[4] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski, Nonsmooth Analysis and Control Theory (Springer, New York, 1998), Grad. Texts Math. 178.
[5] F. H. Clarke, Yu. S. Ledyaev, and P. R. Wolenski, ”Proximal Analysis and Minimization Principles,” J. Math. Anal. Appl. 196, 722–735 (1995). · Zbl 0865.49015
[6] F. H. Clarke, Yu. S. Ledyaev, and A. I. Subbotin, ”The Synthesis of Universal Feedback Pursuit Strategies in Differential Games,” SIAM J. Control Optim. 35, 552–561 (1997). · Zbl 0872.90128
[7] F. H. Clarke, Yu. S. Ledyaev, and A. I. Subbotin, ”Universal Feedback Control via Proximal Aiming in Problems of Control under Disturbance and Differential Games,” Rapport CRM-2386 (Univ. Montréal, 1994). · Zbl 0965.49022
[8] F. H. Clarke, Yu. S. Ledyaev, E. D. Sontag, and A. I. Subbotin, ”Asymptotic Controllability Implies Feedback Stabilization,” IEEE Trans. Autom. Control 42, 1394–1407 (1997). · Zbl 0892.93053
[9] F. H. Clarke, Yu. S. Ledyaev, L. Rifford, and R. J. Stern, ”Feedback Stabilization and Lyapunov Functions,” SIAM J. Control Optim. 39, 25–48 (2000). · Zbl 0961.93047
[10] J.-M. Coron and L. Rosier, ”A Relation between Continuous Time-Varying and Discontinuous Feedback Stabilization,” J. Math. Syst. Estim. Control 4, 67–84 (1994). · Zbl 0925.93827
[11] R. J. Elliott and N. J. Kalton, The Existence of Value in Differential Games (Am. Math. Soc., Providence, RI, 1972), Mem. AMS 126. · Zbl 0262.90076
[12] R. A. Freeman and P. V. Kokotović, Robust Nonlinear Control Design: State-Space and Lyapunov Techniques (Birkhäuser, Boston, 1996).
[13] W. Hahn, Stability of Motion (Springer, New York, 1967). · Zbl 0189.38503
[14] N. N. Krasovskii and A. I. Subbotin, Positional Differential Games (Nauka, Moscow, 1974); French transl.: Jeux differentiels (Mir, Moscow, 1979); revised English transl.: Game-Theoretical Control Problems (Springer, New York, 1988).
[15] Yu. S. Ledyaev and E. F. Mishchenko, ”Extremal Problems in the Theory of Differential Games,” Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 185, 147–170 (1988) [Proc. Steklov Inst. Math. 185, 165–190 (1990)].
[16] Yu. S. Ledyaev and E. D. Sontag, ”A Lyapunov Characterization of Robust Stabilization,” Nonlinear Anal., Theory Methods Appl. 37, 813–840 (1999). · Zbl 0947.34054
[17] E. P. Ryan, ”On Brockett’s Condition for Smooth Stabilizability and Its Necessity in a Context of Nonsmooth Feedback,” SIAM J. Control Optim. 32, 1597–1604 (1994). · Zbl 0806.93049
[18] E. D. Sontag, ”A Lyapunov-like Characterization of Asymptotic Controllability,” SIAM J. Control Optim. 21, 462–471 (1983). · Zbl 0513.93047
[19] E. D. Sontag and H. J. Sussmann, ”Remarks on Continuous Feedback,” in Proc. IEEE Conf. on Decision and Control, Albuquerque, Dec. 1980 (IEEE Publ., Piscataway, 1980), pp. 916–921.
[20] A. I. Subbotin, Generalized Solutions of First-Order PDEs: The Dynamical Optimization Perspective (Birkhaüser, Boston, 1995).
[21] P. P. Varaiya, ”On the Existence of Solutions to a Differential Game,” SIAM J. Control 5, 153–162 (1967). · Zbl 0154.09901
[22] J. Warga, Optimal Control of Differential and Functional Equations (Academic, New York, 1972). · Zbl 0253.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.