×

On the uniqueness problem for quite full logics. (English) Zbl 0581.03044

We present an example of a quite full logic that possesses two distinct bounded observables not being distinguishable by their expectations. This answers the uniqueness problem presented by S. P. Gudder [Pacific J. Math. 19, 81-93, 588-590 (1966; Zbl 0149.236)].

MSC:

03G12 Quantum logic

Citations:

Zbl 0149.236
PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] R.J. Greechie , Orthomodular lattices admitting no states , J. Comb. Theory , t. 10 , 1971 , p. 119 - 132 . MR 274355 | Zbl 0219.06007 · Zbl 0219.06007
[2] S. Gudder , Uniqueness and existence properties of bounded observables , Pacific J. Math. , t. 19 , 1966 , p. 81 - 93 , 578 - 589 . Article | MR 201146 | Zbl 0149.23603 · Zbl 0149.23603
[3] S. Gudder , Axiomatic Quantum Mechanics and Generalized Probability Theory , in Probabilistic Methods in Applied Mathematics , Vol. 2 (A. Bharucha, Reid, ed.), Academic Press , New York , 1970 . MR 266552 | Zbl 0326.60121 · Zbl 0326.60121
[4] S. Gudder , Some unsolved problems in quantum logics , in Mathematical Foundations of Quantum Theory (A. R. Marlow, ed.), Academic Press , New York , 1978 . MR 495813
[5] S. Gudder , Stochastic Methods in Quantum Mechanics , North Holland , New York , 1979 . MR 543489 | Zbl 0439.46047 · Zbl 0439.46047
[6] S. Gudder , Expectation and transition probability , Int. J. Theor. Physics , t. 20 , 1981 , p. 383 - 395 . MR 630220 | Zbl 0483.03041 · Zbl 0483.03041
[7] P. Pták , Logics with given centers and state spaces , Proc. Amer. Math. Soc. , t. 88 , 1983 , p. 106 - 109 . MR 691287 | Zbl 0514.03043 · Zbl 0514.03043
[8] P. Pták , V. Rogalewicz , Regularly full logics and the uniqueness problem for observables , Ann. Inst. H. Poincaré , t. 38 , 1983 , p. 69 - 74 . Numdam | MR 700701 | Zbl 0519.03051 · Zbl 0519.03051
[9] P. Pták , V. Rogalewicz , Measures on orthomodular partially ordered sets , J. Pure Appl. Algebra , t. 28 , 1983 , p. 75 - 80 . MR 692854 | Zbl 0507.06008 · Zbl 0507.06008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.