Barlet, D. Contribution effective dans le réel. (French) Zbl 0581.32016 Compos. Math. 56, 351-359 (1985). Let \(f_{{\mathbb{R}}}: ({\mathbb{R}}^{n+1},0)\to ({\mathbb{R}}^+,0)\) be a germ of a real analytic function and \(f: ({\mathbb{C}}^{n+1},0)\to ({\mathbb{C}},0)\) its complexification. The author establishes a sufficient condition in order that the meromorphic continuation of the distribution \(\int_{X_{{\mathbb{R}}}}f^{\lambda}\square\) have effectively a pole of order at least k at a point of the form \(-u-\nu,\) where \(u\in {\mathbb{Q}}\cap [0,1]\) and \(\nu\in {\mathbb{N}}\). This theorem was suggested by its complex analogous. By means of some results of L. Łojasiewicz [Ann. Scuola Norm. Sup. Pisa, Sci. Fis. Mat., III. Ser. 18(1964), 449-474 (1965; Zbl 0128.171)], J. B. Poly [Bull. Soc. Math. France, Suppl., Mem. 38, 35-43 (1974; Zbl 0302.32010)] and M. Herrera in his joint paper with T. Bloom [Inventiones Math. 7, 275-296 (1968; Zbl 0175.373)] on semi-analytic sets, the author obtains, in an appendix, a strengthening of his theorem mentioned above. Reviewer: P.Caraman Cited in 7 Documents MSC: 32D15 Continuation of analytic objects in several complex variables 32B20 Semi-analytic sets, subanalytic sets, and generalizations 32A20 Meromorphic functions of several complex variables 32B10 Germs of analytic sets, local parametrization Keywords:germs of analytic functions; Milnor fiber; meromorphic continuation; distribution Citations:Zbl 0128.171; Zbl 0302.32010; Zbl 0175.373 × Cite Format Result Cite Review PDF Full Text: Numdam EuDML References: [1] Contribution effective de la monodromie aux développments asymptotiques . Preprint Institut Elie Cartan Nancy janvier 83. A paraître aux Ann. Sc. ENS (84). [2] Contribution du cup-produit de la fibre de Milnor aux pôles de |f| 2\lambda . Preprint Institut Elie Cartan Nancy sept. 83 - à paraître aux Ann. de l’Institut Fourier. · Zbl 0525.32007 [3] Monodromie et poles de \int X|f |2\lambda \square , preprint Institut Elie Cartan, Nancy, avril 1984. [4] T. Bloom et M. Herrera : De Rham cohomology of an analytic space , Invent. Math. 7 (1969) 275-296. · Zbl 0175.37301 · doi:10.1007/BF01425536 [5] S. Łojasiewicz : Triangulation of semi-analytic sets , Ann. Sc. Norm. Sup. Pisa, Sc. Fis. Mat. ser. 3 vol 18 fasc. 4 (1964) 449-474. · Zbl 0128.17101 [6] J. Milnor : Singular points of complex hypersurfaces , Ann. of Math. Studies 61, Princeton University Press (1968). · Zbl 0184.48405 · doi:10.1515/9781400881819 [7] J.B. Poly : Sur l’homologie des courants à support dans un ensemble semi-analytique , Bull. Soc. Math. France, Memoire n^\circ 38 (1974) p. 35-43. · Zbl 0302.32010 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.