zbMATH — the first resource for mathematics

Parabolic exhaustions for strictly convex domains. (English) Zbl 0581.32018
Given \(D\subset {\mathbb{C}}^ n\) a strictly convex domain and \(p\in D\) any point, the author defines a quasi-strictly parabolic exhaustion \(\tau\) of D with center p. The construction uses essentially the work of L. Lempert on the Kobayashi metric [see Bull. Soc. Math. Fr. 109, 427-474 (1981; Zbl 0492.32025)].
Then to D and p are associated in a canonical way a complete circular domain \(G\subset {\mathbb{C}}^ n\) and a homeomorphism \(h: \bar G\to \bar D\) such that \(h(0)=p\), called the circular representation. The main result is: The circular representation is biholomorphic iff the Monge-Ampère foliation induced by the quasi-strictly parabolic exhaustion \(\tau\) of D centered at p is holomorphic.
As a consequence a characterisation of the strictly convex domains D biholomorphic to a circular domain or to a ball in terms of the properties of the automorphism group of D is obtained.
Reviewer: N.Mihalache

32E05 Holomorphically convex complex spaces, reduction theory
32A07 Special domains in \({\mathbb C}^n\) (Reinhardt, Hartogs, circular, tube) (MSC2010)
32U05 Plurisubharmonic functions and generalizations
32M05 Complex Lie groups, group actions on complex spaces
32F45 Invariant metrics and pseudodistances in several complex variables
32E10 Stein spaces
Zbl 0492.32025
Full Text: DOI EuDML
[1] Bedford, E.-Kalka, M..,Foliations and complex Monge-Amp?re equations, Comm. Pure Appl. Math,30(1977), 510-538 · Zbl 0351.35063
[2] Bedford, E.-Taylor, B.A.,Variational properties of the complex Monge-Amp?re equation. II Intrinsic norms., Amer. J. of Math.,101 (1979), 1131-1166 · Zbl 0446.35025
[3] Behnke, H.-Thullen, P.,Theorie der Funktionen mehrer komplexer Ver?nderlichen, Zweite Auflage, Ergebn. der Math. 51, Springer-Verlag, Berlin-Heidelberg-New York, 1970 · Zbl 0204.39502
[4] Braun, R.-Kaup, W.-Upmeier, H.,On the automorphism of circular domains in complex Banach spaces, Manuscripta Math.25 (1978), 97-133 · Zbl 0398.32001
[5] Burns, D.,Curvature of Monge-Amp?re foliations and parabolic manifolds, Ann. of Math.,115 (1982), 349-373 · Zbl 0507.32011
[6] Cartan, H.,Les fonctiones de deux variables complexes et le probl?me de la repr?sentation analytique, J. de Math. Pures et Appl.,96 (1931), 1-114 · JFM 57.0387.01
[7] Greene, R. E.-Krantz, S. G.,Deformation of complex structure, estimates for the \(\underline {\bar \partial } \) equation, and stability of the Bergman Kernel, Advances in Math.,43 (1982), 1-87 · Zbl 0504.32016
[8] Kobayashi, S.,Hyperbolic manifolds and holomorphic maps, Dekker, New York 1970 · Zbl 0207.37902
[9] Kobayashi, S.,Intrinsic distances, measures and geometric function theory, Bull. Am. Math. Soc.,82(1976), 357-416 · Zbl 0346.32031
[10] Lempert, L.,La m?trique de Kobayashi et la repres?ntation des domaines sur la_ boule, Bull. Soc. Math. France,109 (1981), 427-474 · Zbl 0492.32025
[11] Patrizio, G.,Characterization of strictly convex domains biholomorphic to a circular domain, Bull. Am. Math. Soc,9 (1983), 231-233 · Zbl 0527.32011
[12] Patrizio, G.-Wong, P.M.,Stability of the Monge-Amp?re foliation, Math. Ann.,263 (1983), 13-29 · Zbl 0512.32013
[13] Rosay, J.P.,Sur une characterization de la boule parmi les domains de ? m par son groupe d’ automorphismes, Ann. Inst. Four. Grenoble,XXIX (1979), 91-97 · Zbl 0402.32001
[14] Stoll, W.,Value distribution on parabolic spaces, Lecture Notes in Math.,600, Springer-Verlag, Berlin-Heidelberg-New York, 1977 · Zbl 0367.32001
[15] Stoll, W.,The characterization of strictly parabolic manifolds, Ann. Scuola Norm.Sup. Pisa,7 (1980), 87-154 · Zbl 0438.32005
[16] Stoll, W., Thecharacterization of strictly parabolic spaces, Comp. Math.,44 (1981), 305-373 · Zbl 0487.32005
[17] Stout, E.L.,On the multiplicative Cousin problem with bounded data, Ann. Scuola Norm, Sup. Pisa,XXVII (1973), 1-17 · Zbl 0261.32008
[18] Wong, B.,Characterization of the ball in ? m by its automorphisms group, Invent. Math.,41 (1977), 253-257 · Zbl 0385.32016
[19] Wong, P.M.,Geometry of the homogeneous complex Monge-Amp?re equation, Invent. Math.,67 (1982), 261-274 · Zbl 0555.32009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.