×

zbMATH — the first resource for mathematics

Uniqueness and nonuniqueness for positive radial solutions of \(\Delta u+f(u,r)=0\). (English) Zbl 0581.35021
The authors give existence and nonexistence results for radial solutions of the equation \(\Delta u+f(u,| x|)=0\).
Reviewer: M.Biroli

MSC:
35J65 Nonlinear boundary value problems for linear elliptic equations
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ambrosetti, J. Funct. Anal. 14 pp 349– (1973)
[2] Berryman, Arch. Rational Mech. Anal. 74 pp 379– (1980)
[3] Brezis, Comm. Pure Appl. Math. 36 pp 437– (1983)
[4] An introduction to the Study of Stellar Structure, University of Chicago Press, 1939.
[5] Coffman, J. Diff. Eqns. 3 pp 92– (1967)
[6] Coffman, Arch. Rational Mech. Anal. 46 pp 81– (1972)
[7] A nonlinear boundary value problem with many positive solutions, Preprint.
[8] Caffarelli, Duke Math. J. 47 pp 705– (1980)
[9] DeFigueiredo, J. Math. Pures Appl. 61 pp 41– (1982)
[10] Gidas, Comm. Math. Phys. 68 pp 209– (1979)
[11] Hempel, Indiana Univ. Math. J. 26 pp 265– (1977)
[12] Henon, Astron. and Astrophys. 24 pp 229– (1973)
[13] Kazdan, Comm. Pure Appl. Math. 28 pp 567– (1975)
[14] Kolodner, Comm. Pure Appl. Math. 8 pp 395– (1955)
[15] McLeod, Proc. Natl. Acad. Sci. U.S.A. 78 pp 6592– (1981)
[16] Nehari, Trans. Amer. Math. Soc. 95 pp 101– (1960)
[17] Ni, J. Diff. Equs. 50 (1983)
[18] Ni, Indiana Univ. Math. J. 31 pp 801– (1982)
[19] Ni, Trans. Amer. Math. Soc.
[20] Nussbaum, J. Math. Anal. Appl. 51 pp 461– (1975)
[21] Rabinowitz, Indiana Univ. Math. J. 23 pp 729– (1974)
[22] An example for the plasma problem with infinitely many solutions, preprint (unpublished), 1978.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.