zbMATH — the first resource for mathematics

Un procédé d’approximation d’une fonction convexe lipschitzienne et de ses singularités. (French) Zbl 0581.65015
Die Arbeit enthält u.a. folgende Aussagen: Sei f:\({\mathbb{R}}\to {\mathbb{R}}\) eine konvexe und lipschitzstetige Funktion; dann kann man eine Folge von Polynomen \(P_ n^ f\) mit positiven Koeffizienten konstruieren, so daß mit Zahlen C, \(C^ f\) gilt: 1. Grad \((P^ f_ n)\leq C^ f\cdot n\) für \(n\in {\mathbb{N}}\), 2. \(f(t)=Ct+\lim_{n\to \infty}\frac{1}{n}\log P_ n^ f(e^ t)\) für \(t\in {\mathbb{R}}\). Weiter: ist \(t^*\) eine Singularität von f, so ist \(e^{t^*}\) ein Häufungspunkt (in \({\mathbb{C}})\) der Wurzeln der Polynome \(P^ f_ n\). Die letzte Aussage wird durch numerische Experimente illustriert.
Reviewer: C.Geiger

65D15 Algorithms for approximation of functions
41A30 Approximation by other special function classes
Full Text: DOI EuDML
[1] M E FISHER, Thenature of cntical points Lecture m theoretical physics 7c Boulder University of Colorado Press (1964)
[2] P HENRICI, Applied and computational complex analysis, Vol II, J Wiley and Sons Zbl0363.30001 MR372162 · Zbl 0363.30001
[3] B LACOLLE, Algebraic method for the compuîatwn of the pai titwn functions of spin glasses and numerical stydy of the distribution of zeros Critical phenomena in Physics, Biology, Chemistry andother fields > Springer Series m Synergeùcs (1980)
[4] B LACOLLE, otentiel logarithmique et transition de phase, S A N G n^\circ 338 IMAG
[5] T D LEE, C N YANG, Statistique theory of équation of state and phase transition II Lattice gas andIsmg Model Physical Review, vol 87, number 3, August 1952 Zbl0048.43401 · Zbl 0048.43401 · doi:10.1103/PhysRev.87.410
[6] C M MARLEMesures et probabilités Hermann Zbl0306.28001 MR486378 · Zbl 0306.28001
[7] S ONO, Y KARAKI, C KAWABATA, Statistical thermodynamics of fimte IsingModel I Journal of Phys Soc of Japan5 Vol 25,n^\circ 1 (1968)
[8] H POINCARE, Lepotentiel Newtomen
[9] G POLYA, G SZEGO, Problems and theorems in Analysis Vol I, Springer-Verlag Zbl0338.00001 MR396134 · Zbl 0338.00001
[10] G POLYA, G SZEGO, Problems and theorems in Analysis Vol I, Springer-Verlag Zbl0338.00001 MR396134 · Zbl 0338.00001
[11] M SUZUKI, C KAWABATA, S ONO, Y KARAKI, M IKEDA, Statistical thermo-dynamics of finite Ising Model II Journal of Phys Soc of Japan Vol 29, n^\circ 4 (1970)
[12] A E TAYLOR, General theory of functions and Integration Blaisdell Publishmg Zbl0135.11301 · Zbl 0135.11301
[13] G VALIRON, Theone des fonctions Masson (1966) Zbl0028.20801 · Zbl 0028.20801
[14] C N YANG, T D LEE, Statistical theory of équation of state and phase transition I theory of condensation Physical Revieuw, Volume 87, n^\circ 3, August 1952 Zbl0048.43305 MR53028 · Zbl 0048.43305 · doi:10.1103/PhysRev.87.404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.