Stress projection for membrane and shear locking in shell finite elements. (English) Zbl 0581.73091

Since the discovery that reduced integration could lead to more accurate results, there has been a desire to exploit this fact. But with reduced integration one must face the danger of instability. Stress projections offer a rational way of constructing elements with reduced integration but no danger of instability. This is shown in this paper for the shell element, so that the locking phenomenon may be avoided, which may make coarse meshes useless.
Reviewer: H.Matthies


74S05 Finite element methods applied to problems in solid mechanics
74K15 Membranes
74K20 Plates
Full Text: DOI


[1] Allman, D.J., Improved finite element models for the large displacement bending and post buckling analysis of thin plates, Internat. J. solids structures, 9, 18, 737-762, (1982) · Zbl 0496.73070
[2] Argyris, J.H., Continua and discontinua, (), 26-28
[3] Argyris, J.H.; Scharpf, D., The SHEBA family of shell elements for the matrix displacement method, Aeronautical J., 873-883, (1968)
[4] Arnold, D.N., Discretization by finite elements of a model parameter dependent problem, Numer. math., 37, 405-421, (1981) · Zbl 0446.73066
[5] Ashwell, D.G.; Sabir, A.B., Limitations of certain curved finite elements when applied to arches, Internat. J. mech. sci., 13, 133-139, (1971)
[6] Ashwell, D.G., Strain elements, with applications to arches, rings and cylindrical shells, () · Zbl 0111.21303
[7] Batoz, J.L., An explicit formulation for an efficient triangular plate-bending element, Internat. J. numer. meths. engrg., 18, 1077-1089, (1982) · Zbl 0487.73087
[8] Belytschko, T.; Hsieh, B.J., Nonlinear transient finite element analysis with convected coordinates, Internat. J. numer. meths. engrg., 3, 255-272, (1973) · Zbl 0265.73062
[9] Belytschko, T.; Marchertas, A.H., Nonlinear finite element methods for plates and its application to dynamic response of reactor fuel subassemblies, ASME J. pressure vessel techn., 251-257, (1974)
[10] Belytschko, T.; Glaum, L.W., Application of high order corotational stretch theory to nonlinear finite element analysis, Comput. & structures, 10, 175-182, (1979) · Zbl 0393.73085
[11] Belytschko, T.; Tsay, C.S., A stabilization procedure for the quadrilateral plate element with one-point quadrature, Internat. J. numer. meths. engrg., 19, 405-420, (1983) · Zbl 0502.73058
[12] Belytschko, T.; Ong, J.S.-J.; Liu, W.K.; Kennedy, J.M., Hourglass control in linear and nonlinear problems, Comput. meths. appl. mech. engrg., 43, 251-276, (1984) · Zbl 0522.73063
[13] Belytschko, T.; Liu, W.K.; Ong, J.S.-J., A consistent control of spurious singular modes in the 9-node Lagrange element for the Laplace and Mindlin plate equations, Comput. meths. appl. mech. engrg., 44, 269-295, (1984) · Zbl 0525.73086
[14] Belytschko, T.; Stolarski, H.; Carpenter, N., A C0 triangular plate element with one-point quadrature, Internat. J. numer. meths. engrg., 20, 787-802, (1984) · Zbl 0528.73069
[15] Belytschko, T.; Liu, W.K.; Ong, J.S.-J.; Lam, D., Implementation and application of a 9-node Lagrange shell element with spurious mode control, Comput. & structures, (1985), to appear. · Zbl 0581.73089
[16] Belytschko, T.; Stolarski, H.; Wong, B.L., A strain projection approach to the cure of membrane locking, Comput. & structures, (1985), to appear.
[17] Carpenter, N.; Stolarski, H.; Belytschko, T., A flat triangular-shell element with improved membrane interpolation, Comm. appl. numer. meth., (1985), to appear. · Zbl 0582.73061
[18] Cowper, G.R.; Lindberg, G.M.; Olson, M.D., A shallow shell finite element of triangular shape, Internat. J. solids structures, 6, 1133, (1970)
[19] Dawe, D.J., Curved finite elements for the analysis of shallow and deep arches, Comput. & structures, 4, 559-580, (1974)
[20] Doherty, W.P.; Wilson, E.L.; Taylor, R.L., Stress analysis of axisymmetric solids utilizing higher order quadrilateral finite elements, (1969), Structural Engineering Laboratory, University of California Berkeley, CA
[21] Dvorkin, E.N.; Bathe, K.J., A continuum mechanics based four-node shell element for general nonlinear analysis, Engrg. comput., 6, 1, 77-88, (1984)
[22] Flügge, W., Stresses in shells, (1973), Springer Berlin · Zbl 0257.73056
[23] Fried, I., Shape functions and the accuracy of arch finite elements, Aiaa j., 11, 287, (1973) · Zbl 0259.73039
[24] Hughes, T.J.R.; Taylor, R.L.; Kanoknukulchai, W., A simple and efficient element for plate bending, Internat. J. numer. meths. engrg., 11, 10, 1529-1543, (1977) · Zbl 0363.73067
[25] Hughes, T.J.R.; Liu, W.K., Nonlinear finite element analysis of shells: part I. three-dimensional shells, Comput. meths. appl. mech. engrg, 26, 331-362, (1981) · Zbl 0461.73061
[26] Hughes, T.J.R.; Tezduyar, T.E., Finite elements based upon Mindlin plate theory with particular reference to the four-node isoparametric element, J. appl. mech., 48, 587-596, (1981) · Zbl 0459.73069
[27] Idelsohn, S., On the use of deep shallow or flat shell elements for the analysis of thin shell structures, Comput. meths. appl. mech. engrg., 26, 321-330, (1981) · Zbl 0461.73062
[28] Kikuchi, F., Accuracy of some finite element models for arch problems, Comput. meths. appl. mech. engrg., 35, 315-345, (1982) · Zbl 0499.73068
[29] Kikuchi, F.; Aizawa, T., Locking phenomena infinite element analysis of large deflection problems, () · Zbl 0607.73074
[30] Lee, S.W.; Pian, T.H.H., Improvement of plate and shell finite elements by mixed formulations, Aiaa j., 16, 1, 29-34, (1978) · Zbl 0368.73067
[31] Lindberg, G.M.; Olson, M.D.; Cowper, G.R., New developments in the finite element analysis of shells, Quart. bull. div. mech. engrg. and the national aeronautical establishment, 4, (1969)
[32] Liu, W.K.; Belytschko, T.; Law, S.E.; Lam, D., Resultant stress degenerated shell element, Comput. meths. appl. mech. engrg., (1985), submitted. · Zbl 0587.73113
[33] MacNeal, R.H., Derivation of element stiffness matrices by assumed strain distribution, Nuclear engrg. design, 70, 3-12, (1982)
[34] MacNeal, R.H.; Harder, R.L., A proposed standard set of problems to test finite element accuracy, ()
[35] Malkus, D.S.; Hughes, T.J.R., Mixed finite element methods-reduced and selective integration techniques: A unification of concepts, Comput. meths. appl. mech. engrg., 15, 63-81, (1978) · Zbl 0381.73075
[36] Morley, L.S.D., Polynomial stress states in first approximation theory of circular cylindrical shells, Quart. J. mech. appl. math., 25, 13, (1972) · Zbl 0241.73085
[37] Morley, L.S.D.; Morris, A.J., Conflict between finite elements and shell theory, Royal aircraft establishment rept., (1978), London
[38] Morley, L.S.D., Quality of trial functions in quadratic isoparametric representation of an arc, Internat. J. numer. meths. engrg., 19, 1, 37-48, (1983) · Zbl 0497.73067
[39] Noor, A.K.; Peters, J.M., Mixed models and reduced/selective integration displacement models for nonlinear analysis of curved beams, Internat. J. numer. meths. engrg., 17, 615-631, (1981) · Zbl 0459.73067
[40] Oden, J.T.; Reddy, J.N., On dual-complementary variational principles in mathematical physics, Internat. J. engrg. sci., 12, 1-29, (1974) · Zbl 0273.49066
[41] Olson, M.D.; Bearden, T.W., A simple flat triangular shell element revisited, Internat. J. numer. meths. engrg., 14, 51-68, (1979) · Zbl 0395.73075
[42] Parisch, H., A critical survey of the 9-node degenerated shell element with special emphasis on thin shell application and reduced integration, Comput. meths. appl. mech. engrg., 20, 323-350, (1979) · Zbl 0419.73076
[43] Park, K.C.; Flaggs, D.L., A Fourier analysis of spurious mechanisms and locking in computational mechanics, Comput. meths. appl. mech. engrg., 46, 65-81, (1984) · Zbl 0538.73097
[44] Prathap, G.; Bhashyam, G.R., Reduced integration and the shear-flexible beam element, Internat. J. numer. meths. engrg., 18, 195-210, (1982) · Zbl 0473.73084
[45] Ramm, E.; Stegmüller, H., The displacement finite element method in nonlinear buckling analysis of shells, (), 201-235
[46] Sabir, A.B.; Ashwell, D.G., A comparison of curved beam finite elements when used in vibration problems, J. sound vib., 18, 555, (1971)
[47] Sabir, A.B.; Lock, A.C., Large deflection, geometrically nonlinear analysis of circular arches, Internat. J. mech. sci., 15, 37-47, (1973) · Zbl 0285.73079
[48] Scordelis, A.C.; Lo, K.S., Computer analysis of cylindrical shells, J. amer. concr. inst., 61, 539-561, (1969)
[49] Stolarski, H.; Belytschko, T., Reduced integration for shallow-shell facet elements, () · Zbl 0464.73085
[50] Stolarski, H.; Belytschko, T., Membrane locking and reduced integration for curved elements, J. appl. mech., 49, 172-176, (1982) · Zbl 0482.73060
[51] Stolarski, H.; Belytschko, T., Shear and membrane locking in curved C0 elements, Comput. meths. appl. mech. engrg., 41, 279-296, (1983) · Zbl 0509.73072
[52] Stolarski, H.; Belytschko, T.; Carpenter, N.; Kennedy, J.M., A simple triangular curved shell element for collapse analysis, ()
[53] Stolarski, H.; Belytschko, T.; Carpenter, N.; Kennedy, J.M., A simple triangular curved shell element, Engrg. comput., 1, 210-218, (1984)
[54] Stolarski, H.; Belytschko, T., On the equivalence of mode decomposition and mixed finite elements, Comput. meths. appl. mech. engrg., (1985), submitted. · Zbl 0623.73082
[55] H. Stolarski, N. Carpenter and T. Belytschko, Some aspects of finite element analysis of shells, in preparation. · Zbl 0528.73069
[56] Wempner, G.; Talaslidis, D.; Hwang, C.M., A simple and efficient approximation of shells via finite quadrilateral elements, J. appl. mech., 49, 1, 115-120, (1982)
[57] Zienkiewicz, O.C.; Taylor, R.L.; Too, J.M., Reduced integration technique in general analysis of plates and shells, Internat. J. numer. meths. engrg., 3, 275-290, (1971) · Zbl 0253.73048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.