×

zbMATH — the first resource for mathematics

Finite rate chemistry effects in highly sheared turbulent premixed flames. (English) Zbl 1410.76465
Summary: Detailed scalar structure measurements of highly sheared turbulent premixed flames stabilized on the piloted premixed jet burner (PPJB) are reported together with corresponding numerical calculations using a particle based probability density function (PDF) method. The PPJB is capable of stabilizing highly turbulent premixed jet flames through the use of a small stoichiometric pilot that ensures initial ignition of the jet and a large shielding coflow of hot combustion products. Four lean premixed methane-air flames with a constant jet equivalence ratio are studied over a wide range of jet velocities. The scalar structure of the flames are examined through high resolution imaging of temperature and OH mole fraction, whilst the reaction rate structure is examined using simultaneous imaging of temperature and mole fractions of OH and CH\(_{2}\)O. Measurements of temperature and mole fractions of CO and OH using the Raman-Rayleigh-LIF-crossed plane OH technique are used to examine the flame thickening and flame reaction rates. It is found that as the shear rates increase, finite-rate chemistry effects manifest through a gradual decrease in reactedness, rather than the abrupt localized extinction observed in non-premixed flames when approaching blow-off. This gradual decrease in reactedness is accompanied by a broadening in the reaction zone which is consistent with the view that turbulence structures become embedded within the instantaneous flame front. Numerical predictions using a particle-based PDF model are shown to be able to predict the measured flames with significant finite-rate chemistry effects, albeit with the use of a modified mixing frequency.

MSC:
76V05 Reaction effects in flows
80A25 Combustion
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Masri, A.R., Bilger, R.W., Dibble, R.W.: Turbulent nonpremixed flames of methane near extinction: mean structure from raman measurements. Combust. Flame 71, 245–226 (1988) · doi:10.1016/0010-2180(88)90062-4
[2] Dally, B.B., Masri, A.R., Barlow, R.S., Fiechtner, G.J.: Instantaneous and mean compositional structure of bluff-body stabilized nonpremixed flames. Combust. Flame 114, 119–148 (1998) · doi:10.1016/S0010-2180(97)00280-0
[3] Masri, A.R., Kalt, P.A.M., Barlow, R.S.: The compositional structure of swirl stabilised turbulent nonpremixed flames. Combust. Flame 137, 1–37 (2004) · doi:10.1016/j.combustflame.2003.12.004
[4] Stårner, S.H., Bilger, R.W.: Characteristics of a piloted diffusion flame designed for study of combustion turbulence interactions. Combust. Flame 61, 29–38 (1985) · doi:10.1016/0010-2180(85)90070-7
[5] Masri, A.R., Bilger, R.W.: Turbulent diffusion flames of hydrocarbon fuels stabilised on a bluff body. Proc. Combust. Inst. 20, 317–323 (1984)
[6] Al-Abdeli, Y.M., Masri, A.R.: Stability characteristics and flowfields of turbulent non-premixed swirling flames. Combust. Theory Modelling 7, 731–766 (2003) · Zbl 1068.80502 · doi:10.1088/1364-7830/7/4/007
[7] Pope, S.B.: PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119–192 (1985) · doi:10.1016/0360-1285(85)90002-4
[8] Peters, N.: Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 10, 319–339 (1984) · doi:10.1016/0360-1285(84)90114-X
[9] Klimenko, A.Y., Bilger, R.W.: Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci. 25, 595–687 (1999) · doi:10.1016/S0360-1285(99)00006-4
[10] Kempf, A., Sadiki, A., Janika, J.: Prediction of finite chemistry effects using large eddy simulation. Proc. Combust. Inst. 29, 1979–1985 (2002) · doi:10.1016/S1540-7489(02)80241-3
[11] Navarro-Martinez, S., Kronenburg, A.: LES-CMC simulations of a turbulent bluff-body flame. Proc. Combust. Inst. 31, 1721–1728 (2007) · doi:10.1016/j.proci.2006.07.212
[12] Raman, V., Pitsch, H.: A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry. Proc. Combust. Inst. 31, 1711–1719 (2007) · doi:10.1016/j.proci.2006.07.152
[13] Lipatnikov, A.N., Chomiak, J.: Turbulent flame speed and thickness: phenomenology, evaluation, and application in multi-dimensional simulations. Prog. Energy Combust. Sci. 28, 1–74 (2002) · doi:10.1016/S0360-1285(01)00007-7
[14] Trouve, A., Poinsot, T.: The evolution equation for the flame surface density in turbulent premixed combustion. J. Fluid Mech. 278, 1–31 (1994) · Zbl 0825.76899 · doi:10.1017/S0022112094003599
[15] El-Banhawy, Y., Sivasegaram, S., Whitelaw, J.H.: Premixed, turbulent combustion of a sudden-expansion flow. Combust. Flame 50, 153–165 (1983) · doi:10.1016/0010-2180(83)90058-5
[16] Magre, P., Moreau, P., Collin, G., Borghi, R., Péalat, M.: Further studies by CARS of premixed turbulent combustion in a high velocity flow. Combust. Flame 71, 147–168 (1988) · doi:10.1016/0010-2180(88)90004-1
[17] Frank, J.H., Kalt, P.A.M., Bilger, R.W.: Measurements of conditional velocities in turbulent premixed flames by simultaneous OH PLIF and PIV. Combust. Flame 116, 220–232 (1999) · doi:10.1016/S0010-2180(98)00041-8
[18] Mansour, M.S., Chen, Y.-C., Peters, N.: The reaction zone structure of turbulent premixed methane-helium-air flames near extinction. Proc. Combust. Inst. 24, 461–468 (1992)
[19] Wu, M.S., Kwon, S., Driscoll, J.F., Faeth, G.M.: Preferential diffusion effects on the surface structure of turbulent premixed hydrogen/air flames. Combust. Sci. Technol. 78, 69–96 (1991) · doi:10.1080/00102209108951741
[20] Bedat, B., Cheng, R.K.: Experimental study of premixed flames in intense isotropic turbulence. Combust. Flame 100, 485–494 (1995) · doi:10.1016/0010-2180(94)00138-I
[21] O’Young, F., Bilger, R.W.: Measurement of scalar dissipation in premixed flames. Combust. Sci. Technol. 113, 393–411 (1996) · doi:10.1080/00102209608935505
[22] Soika, A., Dinkelacker, F., Leipertz, A.: Measurement of the resolved flame structure of turbulent premixed flames with constant reynolds number and varied stoichiometry. Proc. Combust. Inst. 27, 785–792 (1998)
[23] Bedat, B., Cheng, R.K.: Effects of buoyancy on premixed flame stabilization. Combust. Flame 107, 13–26 (1995) · doi:10.1016/0010-2180(96)00050-8
[24] Landenfeld, T., Kremer, A., Hassel, E.P., Janicka, J., Schäfer, T., Kazenwadel, J., Schulz, C., Wolfrum, J.: Laser-diagnostic and numerical study of strongly swirling natural gas flames. Proc. Combust. Inst. 27, 1023–1029 (1998)
[25] Bradley, D., Gaskell, P.H., Gu, X.J., Lawes, M., Scott, M.J.: Premixed turbulent flame instability and NO formation in a lean-burn swirl burner. Combust. Flame 115, 515–538 (1998) · doi:10.1016/S0010-2180(98)00024-8
[26] Wicksall, D.M., Agrawal, A.K., Schefer, R.W., Keller, J.O.: The interaction of flame and flow field in a lean premixed swirl-stabilized combustor operated on H2/CH4/air. Proc. Combust. Inst. 30, 2875–2883 (2005) · doi:10.1016/j.proci.2004.07.021
[27] Dinkelacker, F., Soika, A., Most, D., Hofmann, D., Leipertz, A., Polifke, W., Döbbeling, K.: Structure of locally quenched highly turbulent lean premixed flames. Proc. Combust. Inst. 27, 857–865 (1998)
[28] O’Young, F., Bilger, R.W.: Scalar gradient and related quantities in turbulent premixed flames. Combust. Flame 109, 682–700 (1997) · doi:10.1016/S0010-2180(97)00056-4
[29] Mansour, M.S., Chen, Y.-C., Peters, N.: Highly strained turbulent rich methane flames stabilized by hot combustion products. Combust. Flame 116, 136–153 (1999) · doi:10.1016/S0010-2180(98)00029-7
[30] Chen, Y.-C., Peters, N., Schneemann, G.A., Wruck, N., Renz, U., Mansour, M.S.: The detailed flame structure of highly stretched turbulent premixed methane-air flames. Combust. Flame 107, 223–244 (1996) · doi:10.1016/S0010-2180(96)00070-3
[31] Cabra, R., Myhrvold, T., Chen, J.Y., Dibble, R.W., Karpetis, A.N., Barlow, R.S.: Simultaneous laser raman-rayleigh-lif measurements and numerical modeling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow. Proc. Combust. Inst. 29, 1881–1888 (2002) · doi:10.1016/S1540-7489(02)80228-0
[32] Dunn, M.J., Masri, A.R., Bilger, R.W.: A new piloted premixed jet burner to study strong finite-rate chemistry effects. Combust. Flame 151, 46–60 (2007) · doi:10.1016/j.combustflame.2007.05.010
[33] Lutz, A.E., Kee, R.J., Grcar, J.F., Rupley, F.M., OPPDIF: A Fortran Program for Computing Opposed-Flow Diffusion Flames. Tech. Rept. SAND96-8243 UC-1409, Sandia National Labs., Albuquerque, NM (1997)
[34] Kee, R.J., Grcar, J.F., Smooke, M.D., Miller, J.A.: A FORTRAN Program for Modeling Steady Laminar One-dimensional Premixed Flames. Tech. Rept. SAND85-8240, Sandia National Labs., Albuquerque, NM (1993)
[35] Kee, R.J., Rupley, F.M., Miller, J.A.: The CHEMKIN Thermodynamic Data Base. Tech. Rept. SAND87-8215B, Sandia National Labs., Albuquerque, NM (1992)
[36] Kee, R.J., Dixon-Lewis, G., Warnatz, J., Coltrin, M.E., Miller, J.A.: A FORTRAN Computer Code Package for the Evaluation of Gas-phase, Multicomponent Transport Properties. Tech. Rept. SAND86-8246, Sandia National Labs., Albuquerque, NM (1992)
[37] Smith, G.P., Golden, D.M., Frenklach, M.S., Moriarty, N.W., Eiteneer, B., Gardiner, M., Lissianski, V.V., Qin, Z.: GRI-MECH 3.0. http://www.me.berkeley.edu/gri_mech (1999)
[38] Dunn, M.J.: Finite-rate Chemistry Effects in Turbulent Premixed Combustion. PhD Thesis, AMME, The University of Sydney, Sydney (2008)
[39] Dunn, M.J., Masri, A.R., Bilger, R.W., Barlow, R.S., Wang, G.-H.: The compositional structure of highly turbulent piloted premixed flames issuing into a hot coflow. Proc. Combust. Inst. 32, 1779–1786 (2009) · doi:10.1016/j.proci.2008.08.007
[40] Masri, A.R., Bilger, R.W., Dibble, R.W.: Conditional probability density functions measured in turbulent nonpremixed flames of methane near extinction. Combust. Flame 74, 267–284 (1988) · doi:10.1016/0010-2180(88)90073-9
[41] Masri, A.R., Bilger, R.W., Dibble, R.W.: Turbulent nonpremixed flames of methane near extinction; probability density functions. Combust. Flame 73, 261–285 (1988) · doi:10.1016/0010-2180(88)90023-5
[42] Joedicke, A., Peters, N., Mansour, M.: The stabilisation mechanism and structure of turbulent hydrocarbon lifted flames. Proc. Combust. Inst. 30, 901–909 (2005) · doi:10.1016/j.proci.2004.08.031
[43] Böckle, S., Kazenwadel, J., Kunzelmann, T., Shin, D.-I., Schulz, C., Wolfrum, J.: Simultaneous single-shot laser-based imaging of formaldehyde, OH, and temperature in turbulent flames. Proc. Combust. Inst. 28, 279–286 (2000) · doi:10.1016/S0082-0784(00)80221-0
[44] Ayoola, B.O., Balachandran, R., Frank, J.H., Mastorakos, E., Kaminski, C.F.: Spatially resolved heat release rate measurements in turbulent premixed flames. Combust. Flame 144, 1–16 (2006) · doi:10.1016/j.combustflame.2005.06.005
[45] Fayoux, A., Zähringer, K., Gicquel, O., Rolon, J.C.: Experimental and numerical determination of heat release in counterflow premixed laminar flames. Proc. Combust. Inst. 30, 251–257 (2005) · doi:10.1016/j.proci.2004.08.210
[46] Kelman, J.B., Masri, A.R.: Simultaneous imaging of temperature and OH in turbulent diffusions flames. Combust. Sci. Technol. 122, 1–32 (1994) · doi:10.1080/00102209708935603
[47] Frank, J.H., Kaiser, S.A., Long, M.B.: Multiscalar imaging in partially premixed jet flames with argon dilution. Combust. Flame 143, 507–523 (2005) · doi:10.1016/j.combustflame.2005.08.027
[48] Rehm, J.E., Paul, P.H.: Reaction rate imaging. Proc. Combust. Inst. 28, 1775–1782 (2000) · doi:10.1016/S0082-0784(00)80579-2
[49] Karpetis, A.N., Barlow, R.S.: Measurements of flame orientation and scalar dissipation in turbulent partially premixed methane flames. Proc. Combust. Inst. 30, 665–672 (2005) · doi:10.1016/j.proci.2004.08.222
[50] Karpetis, A.N., Settersten, T.B., Schefer, R.W., Barlow, R.S.: Laser imaging system for determination of three-dimensional scalar gradients in turbulent flames. Opt. Lett. 29, 355–357 (2004) · doi:10.1364/OL.29.000355
[51] Anand, M.S., Pope, S.B.: Calculations of premixed turbulent flames by PDF methods. Combust. Flame 67, 127–142 (1987) · doi:10.1016/0010-2180(87)90146-5
[52] Pope, S.B.: Monte Carlo Calculations of Premixed Turbulent Flames. In: Proc. 18th Int. Symp. Combustion, pp. 1001–1010 (1981)
[53] Cannon, S.M., Brewster, B.S., Smoot, L.D.: PDF modeling of lean premixed combustion using in situ tabulated chemistry. Combust. Flame 119, 233–252 (1999) · doi:10.1016/S0010-2180(99)00057-7
[54] James, S., Anand, M.S., Razdan, M.K., Pope, S.B.: In situ detailed chemistry calculations in combustor flow analyses. ASME J. Eng. Gas Turbines Power 123, 747–756 (2001) · doi:10.1115/1.1384878
[55] Kuan, T.S., Lindstedt, R.P., Vaos, E.M.: Higher moment based modeling of turbulence enhanced explosion kernels in confined fuel-air mixtures. In: Roy, G. (ed.) Advances in Confined Detonations and Pulse Detonation Engines, pp. 17–40. Torus, Moscow (2003)
[56] Lindstedt, R.P., Vaos, E.M.: Transported PDF modeling of high-Reynolds-number premixed turbulent flames. Combust. Flame 145, 495–511 (2006) · doi:10.1016/j.combustflame.2005.12.015
[57] Gkagkas, K., Lindstedt, R.P., Kuan, T.S.: Transported PDF modelling of a high velocity bluff-body stabilised flame (HM2) using detailed chemistry. Flow, Turbulence Combust. 82, 493–509 (2009) · Zbl 1259.80013 · doi:10.1007/s10494-008-9164-0
[58] Gkagkas, K., Lindstedt, R.P.: The impact of reduced chemistry on auto-ignition of H2 in turbulent flows. Combust. Theory Modelling 13, 607–643 (2009) · Zbl 1176.80073 · doi:10.1080/13647830902928524
[59] Lindstedt, R.P., Louloudi, S.A.: Joint scalar transported probability density function modeling of turbulent methanol jet diffusion flames. Proc. Combust. Inst. 29, 2147–2154 (2002) · doi:10.1016/S1540-7489(02)80261-9
[60] Subramaniam, S., Pope, S.B.: A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees. Combust. Flame 115, 487–514 (1998) · doi:10.1016/S0010-2180(98)00023-6
[61] Cao, R.R., Wang, H., Pope, S.B.: The effect of mixing models in PDF calculations of piloted jet flames. Proc. Combust. Inst. 31, 1543–1550 (2007) · doi:10.1016/j.proci.2006.08.052
[62] Kazakov, A., Frenklach, M.: Reduced reaction sets based on GRI-Mech 1.2. http://www.me.berkeley.edu/drm/ (2007)
[63] Pope, S.B.: Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theory Modelling 1, 41–63 (1997) · Zbl 1046.80500 · doi:10.1080/713665229
[64] Wilcox, D.C.: Turbulence Modeling for CFD, 2nd ed. DCW, La Cañada (1998)
[65] Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12, 1843–1863 (2000) · Zbl 1184.76109 · doi:10.1063/1.870436
[66] Trouvé, A., Poinsot, T.J.: The evolution equation for the flame surface density in turbulent premixed combustion. J. Fluid Mech. 278, 1–31 (1994) · Zbl 0825.76899 · doi:10.1017/S0022112094003599
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.