zbMATH — the first resource for mathematics

Typical continuous function without cycles is stable. (English) Zbl 0582.54026
Let C be the metric space of all \(I\to I\) continuous functions with the uniform metric. If \(f\in C\) has a cycle of order n at x, the length of this cycle is \(d=\max \{| f^ r(x)-f^ s(x)|;\quad 1\leq r,s\leq n\}.\) Let \(\lambda\) (f) be the lowest upper bound of the lengths of all cycles of f. The function f is said to be stable if \(\lambda\) : \(C\to {\mathbb{R}}\) is continuous at f. Denoting by \(A=\{f\in C\); f is without cycles\(\}\) and by \(F=\{f\in A\); f is unstable\(\}\) the author proves that A is a second Baire category set in itself, while F is a first category set in A.
Reviewer: Gh.Toader
54H20 Topological dynamics (MSC2010)
26A18 Iteration of real functions in one variable
Full Text: EuDML
[1] BLOCK L.: Stability of periodic orbits in the theorem of Šarkovskii. Proc. Amer. Math. Soc. 81, 1981, 333-336. · Zbl 0462.54029
[2] COVEN E. M., HEDLUND G. A.: Continuous maps of the interval whose periodic points form a closed set. Proc. Amer. Math. Soc. 79, 1980, 127-133. · Zbl 0397.54057
[3] KLOEDEN P.: Chaotic difference equations are dense. Bull. Austr. Math. Soc. 15, 1976, 371-379. · Zbl 0335.39001
[4] LI T. Y., YORKE J. A.: Period three implies chaos. Amer. Math. Monthly 82, 1 975, 985-992. · Zbl 0351.92021
[5] MAY R. M.: Sirnple mathematical models with very complicated dynamics. Nature 261, 1976, 459-467. · Zbl 1369.37088
[6] SMÍTAL J., SMÍTALOVÁ K.: Structural stability of typical nonchaotic difference equations. Journ. Math. Anal. and Appl. 90, 1982, 1-11.
[7] SMÍTAL J., NEUBRUNNOVÁ K.: Stability of typical continuous functions with respect to some properties of their iterates. Proc. Amer. Math. Soc. to appear. · Zbl 0529.54038
[8] ШАРКОВСКИЙ А. Н.: Сосущєствованиє циклов нєпрєрывного прєобразования прямой в сєбя. Украин. Мат. Журнал 16, 1964, 61-71.
[9] ШАРКОВСКИЙ А. Н.: О циклах и структурє нєпрєрывного отображєния. Украин. Мат. Журнал 17, 1965, 104-111.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.