×

zbMATH — the first resource for mathematics

Characterizations of finitely determined equivariant map germs. (English) Zbl 0582.58003
This paper generalises results of Mather, characterising finitely determined map germs, to germs which are equivariant with respect to linear actions of a compact or reductive (in the real and complex cases, respectively) Lie group G. Finite determinacy is considered with respect to equivariant analogues of the groups of equivalences studied by Mather. The characterisations obtained are: (1) necessary and sufficient ”infinitesimal” algebraic conditions for a germ to be finitely determined, (2) ”geometric criteria” for the finite determinacy of a germ, in terms of the stability of nearby germs, and (3) a characterisation of finitely determined germs in terms of transversality conditions on the ”G-jet” extension (introduced in the paper) of a representative of the germ. The final section considers some examples.

MSC:
58A20 Jets in global analysis
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Arnol’d, V.I.: Wave front evolution and equivariant Morse lemma. Comm. Pure Appl. Math.29, 557-582 (1976) · Zbl 0343.58003
[2] Arnol’d, V.I.: Critical points of functions on manifolds with boundary. Russ. Math. Surv.33, 99-116 (1978) · Zbl 0415.58004
[3] Bierstone, E.: Generic equivariant maps. In: Real and complex singularities: Oslo 1976, ed. P. Holm, Alphen: Sijthoff and Noordhoff 1977
[4] Bruce, J.W., du Plessis, A.A., Wall, C.T.C.: Determinacy and unipotency. Preprint
[5] Damon, J.: The unfolding and determinacy theorems for subgroups ofA andK Proc. Pure Math.40, 233-254 (1983)
[6] Gaffney, T.: Properties of finitely determined germs. Thesis, Brandeis Univ. 1975
[7] Golubitsky, M., Schaeffer, D.: Imperfect bifurcation in the presence of symmetry. Commun. Math. Phys.67, 203-232 (1979) · Zbl 0467.58019
[8] Hochschild, G.: The structure of Lie groups. San Francisco, London, Amsterdam: Holden-Day 1965 · Zbl 0131.02702
[9] Hochschild, G., Mostow, G.D.: Representations and representative functions of Lie groups. III. Ann. Math.70, 85-100 (1959) · Zbl 0111.03201
[10] Hümmel, A.: Bifurcations of periodic points. Thesis, Gröningen Univ. 1979
[11] Izumiya, S.: Stability of G-unfoldings. Hokkaido Math. J.9, 31-45, (1980) · Zbl 0434.58012
[12] Izumiya, S.: Notes on stable equivariant map germs. Math. J. Okayama Univ.24, 167-178 (1982) · Zbl 0499.58006
[13] Mather, J.N.: Stability ofC ? mappings. I. The division theorem. Ann. Math.87, 89-104 (1968); II. Infinitesimal stability implies stability. Ann. Math.89, 259-291 (1969); III. Finitely determined map germs. Publ. Math. IHES35, 127-156 (1969); IV. Classification of stable germs by?-algebras, Publ. Math. IHES37, 223-248 (1970); V. Transversality Adv. Math.4, 301-335 (1970); VI. The nice dimensions. In: Lect. Notes Math. 192. Berlin, Heidelberg, New York: Springer 1971 · Zbl 0159.24902
[14] Poenaru, V.: SingularitésC ? en présence de symétrie. Lect. Notes Math.510. Berlin, Heidelberg, New York: Springer 1976
[15] Roberts, R.M.: A note on coherent G-sheaves. Math. Ann.275, 573-582 (1986) · Zbl 0595.32014
[16] Roberts, R.M.: On the genericity of some properties of equivariant map germs. J. Lond. Math. Soc.32, 177-192 (1985) · Zbl 0567.58002
[17] Siersma, D.: Singularities of functions on boundaries, corners, etc. Quart. J. Math.32, 119-127 (1981) · Zbl 0449.58008
[18] Slodowy, P.: Einige Bemerkungen zur Entfaltung symmetrischer Funktionen. Math. Z.158, 157-170 (1978) · Zbl 0361.58003
[19] Snow, D.M.: Reductive group actions on Stein spaces. Math. Ann.259, 79-97 (1982) · Zbl 0509.32021
[20] Thom, R.: Stabilité structurelle et morphogénèse. New York: Benjamin 1972
[21] Wall, C.T.C.: A second note on symmetry of singularities. Bull. London Math. Soc.12, 347-354 (1980) · Zbl 0436.58008
[22] Wall, C.T.C.: Finite determinacy of smooth map germs. Bull. Lond. Math. Soc.13, 481-539 (1981) · Zbl 0459.58004
[23] Wall, C.T.C.: Equivariant jets. Math. Ann.272, 41-65 (1985) · Zbl 0563.58002
[24] Wall, C.T.C.: Survey of recent results on singularities of equivariant maps. Preprint, University of Liverpool 1985 · Zbl 0672.58005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.