## On the thermomechanics of interstitial working.(English)Zbl 0582.73004

Korteweg’s constitutive assumptions, destined to describe the capillarity effects and the structure of liquid phase transition under both static and dynamic conditions, are generally, incompatible with conventional thermodynamics.
Regarding the Korteweg’s type of continuum models like special examples of elastic materials of grade $$N$$, it is the aim of this paper to elaborate the theory of a thermodynamic structure comprising the non-trivial Korteweg’s type materials. The theory presented here is preserving in their standard forms the principles of linear and angular momentum balance, as well as the Clausius-Duhem inequality. Only the energy balance is modified: for each process $$\pi$$ it is postulated the existence of a rate supply of mechanical energy $$u=u(X,t;n)$$, called the interstitial work, defined on all $$(X,t)\in B\times {\mathbb{R}}$$ and all unit vectors $$n$$, such that, with usual notations, the energy balance for each subdomain $$P$$ of the body $$B$$ has the form $\frac{d}{dt}\int_{P_ t}\rho (\epsilon +\frac{1}{2}\dot x\cdot \dot x)\,dv=\int_{\partial P_ t}(Tn\cdot \dot x+u-q\cdot n)\,da+\int_{P_ t}\rho (b\cdot \dot x+r)\,dv.$ An analogue of Cauchy’s theorem shows that the above balance law holds for all $$P\subset B$$ iff the $$u(X,t;n)=u(X,t)\cdot n$$ for any unit vector $$n$$.
The local form of the equations governing this theory are deduced, and the thermodynamic consequences of this equations for the constitutive structure arising from the assumption that $$\epsilon$$, $$\eta$$, $$T$$, $$q$$, and $$u$$ are smooth functions of $$F$$, $$\theta$$, $$\nabla F$$, $$\nabla^ 2F$$, $$g=\text{grad } \theta$$, and $$F$$ are investigated. The particular cases of: 1. General elastic materials (viscous effects are absent, i.e. $$\epsilon$$, $$\eta$$, $$T$$, $$q$$, and $$u$$ are independent of $$F$$), 2. Materials of Korteweg type (i.e. $$\epsilon$$, $$\eta$$, $$T$$, $$q$$, and $$u$$ are functions of density $$\rho$$, d$$=\text{grad} \rho,\quad S=\text{grad}^ 2\,\rho$$, $$g$$, and $$L=\dot F\cdot F^{-1}$$ and 3. Elastic materials of Korteweg type (i.e. materials of Korteweg type without viscous effects), are throughly discussed.
The paper is also containing a consistent introduction, pointing out the physical base of this theory and its place among the existing ones, and three welcome Appendices. The authors, well known specialists in the field, have done an excellent job writing this paper which will become a standard reference for foundations of thermodynamics. The paper is of great interest to research scientists in thermodynamics, applied thermodynamics, physicists, and engineers.
Reviewer: Gh.Gr.Ciobanu

### MSC:

 74A15 Thermodynamics in solid mechanics 74Axx Generalities, axiomatics, foundations of continuum mechanics of solids 80A05 Foundations of thermodynamics and heat transfer 76A05 Non-Newtonian fluids 74B10 Linear elasticity with initial stresses 74F05 Thermal effects in solid mechanics
Full Text:

### References:

  Toupin, R. A., Elastic materials with couple-stresses. Ar · Zbl 0112.16805  Toupin, R. A., Theories of elasticity with couple-stress. Ar · Zbl 0131.22001  Gurtin, M., Thermodynamics and the possibility of spatial interaction in elastic materials. Ar · Zbl 0146.21106  Eringen, A. C., A unified theory of thermomechanical materi · Zbl 0139.20204  Fixman, M., Transport coefficients in the gas critical r · Zbl 0594.05002  Felderhof, B. U., Dynamics of the diffuse gas-liquid interface near the  Blinowski, A., On the surface behavior of gradient-sensit · Zbl 0253.76002  Blinowski, A., On the order of magnitude of the gradient-of-density dependent part of an elastic potential · Zbl 0274.76029  Blinowski, A., Gradient description of capillary phenomena in multicompo · Zbl 0323.76079  Blinowski, A., On the phenomenological models of capillar · Zbl 0417.73003  Aifantis, E. C., & J. Serrin, The mechanical theory of fluid interfaces and Maxwell’s rule. J  Aifantis, E. C., & J. Serrin, Equilibrium solutions in the mechanical theory of fluid microstructures. J  Slemrod, M., Admissibility criteria for propagating phase boundaries in a van der Waals fluid. Ar · Zbl 0505.76082  Slemrod, M., Dynamic phase transitions in a van der Waals fluid. J · Zbl 0487.76006  Slemrod, M., An admissibility criterion for fluids exhibiting phase transitions. Nonlinear Partial Differential Equations. Ed.by J. Ball. NATO Advanced Study Institute, Plenum Press: New York, 1982.  Hagan, R., & M. Slemrod, The viscosity-capillarity admissibility criterion for shocks and phase transitions. Ar · Zbl 0531.76069  Hagan, R., & J. Serrin, Dynamic changes of phase in a van der Waals fluid, To appear in New Perspectives in Thermodynamic, Springer-Verlag, 1985. · Zbl 0613.76074  Serrin, J., The form of interfacial surfaces in Korteweg’s theory of phase equilibria. Q. Appl. Math., 41, 351–364 (1983). · Zbl 0533.76099  Cheverton, K. J., & M. F. Beatty, On the mathematical theory of the mechanical behavior of some non-simple materials. Ar · Zbl 0344.73010  Beatty, M. F., & K. J. Cheverton, The basic equations for a grade 2 material viewed as an oriente · Zbl 0347.73005  Murdoch, A. I., Symmetry considerations for materials of sec · Zbl 0395.73001  Ericksen, J. L., Conservation laws for liquid crysta  Truesdell, C., & W. Noll, The Non-Linear Field Theories · Zbl 0779.73004  Müller, I., On the entropy inequality. Ar · Zbl 0163.46701  Eringen, A. C., Nonlocal polar elastic conti · Zbl 0229.73006  Eringen, A. C., & D. G. B. Edelen, On nonlocal elastic · Zbl 0247.73005  Eringen, A. C., On nonlocal fluid mechan · Zbl 0241.76009  Aifantis, E. C., A proposal for continuum with microstr  Coleman, B. D., & V. J. Mizel, Existence of caloric equations of state in thermody  Noll, W., Representations of certain isotropic tenso · Zbl 0194.06401  Dunn, J. E., Interstitial working and a nonclassical continuum thermodynamics. To appear, New Perspectives in Thermodynamics, Springer-Verlag, 1985.  Coleman, B. D., & V. J. Mizel, Thermodynamics and departures from Fourier’s law of heat conduction. Ar · Zbl 0114.44905  Green, A. E., & R. S. Rivlin, Simple force and stress multipoles. Arch. Rational Mech. Anal. 16, 325–353 (1964). · Zbl 0244.73005  Green, A. E., & R. S. Rivlin, Multipolar continuum mechanics. Arch. Rational Mech. Anal. 17, 113–147 (1964). · Zbl 0133.17604  Gurtin, M. E., & L. S. Vargas, On the classical theoty of reacting fluid mixtures. Ar · Zbl 0227.76011  Olver, P. J., Conservation laws and null divergences. Math · Zbl 0556.35021  Olver, P. J., Conservation laws and null divergences. II Nonnegative divergences. Math. Proc. Camb. Phil. Soc. To appear. · Zbl 0561.35011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.