×

On the general rolling contact problem for finite deformations of a viscoelastic cylinder. (English) Zbl 0582.73113

The formulation of a variational principle for the finite steady-state deformation of a rolling cylinder is presented together with finite element methods and numerical algorithms for the analysis of such problems. The unilateral contact of hyperelastic and viscoelastic rolling cylinders on a rough foundation on which nonclassical friction laws hold is characterized by a highly nonlinear variational inequality, the solutions of which can exhibit bifurcations for certain values of angular velocity. Some of these bifurcations correspond to the emergence of standing waves in such cylinders. The results of several numerical experiments are also presented.

MSC:

74A55 Theories of friction (tribology)
74M15 Contact in solid mechanics
74B20 Nonlinear elasticity
74S05 Finite element methods applied to problems in solid mechanics
49S05 Variational principles of physics
49J40 Variational inequalities
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Aly, A. S., A finite element analysis for problems of large strain and large displacement, (Ph.D. Dissertation (1981), University of Texas: University of Texas Austin, TX)
[2] Bapat, C. N.; Batra, R. C., Finite plane strain deformations of nonlinear viscoelastic rubber-covered rolls, Internat. J. Numer. Meths. Engrg., 20, 1191-1928 (1984) · Zbl 0539.73144
[3] Batra, R. C., Quasistatic indentation of a rubber-covered roll by a rigid roll, Internat. J. Numer. Meths. Engrg., 17, 1823-1833 (1981) · Zbl 0468.73095
[4] Campos, L. T.; Oden, J. T.; Kikuchi, N., A numerical analysis of a class of contact problems with friction in elastostatics, Comput. Meths. Appl. Mech. Engrg., 34, 821-845 (1982) · Zbl 0504.73050
[5] Christensen, R. M., A nonlinear theory of viscoelasticity for application to elastomers, J. Appl. Mech., 47, 4, 762-768 (1980) · Zbl 0456.73021
[6] Crisfield, M. A., A fast incremental/iterative solution procedure that handles ‘snap-through’, Comput. & Structures, 13, 55-62 (1981) · Zbl 0479.73031
[7] Decker, D. W.; Keller, H. B., Multiple limit point bifurcation, J. Math. Anal. Appl., 75, 417-430 (1980) · Zbl 0452.47075
[8] Duffet, G. A.; Reddy, B. D., Systems of nonlinear equations with many parameters, (Proceedings of FEMSA’85 (1984), University of Stellenbosch), 260-291
[9] Duvaut, G.; Lions, J. L., Inequalities in Mechanics and Physics (1972), Springer: Springer Berlin · Zbl 0331.35002
[10] Endo, T.; Oden, J. T.; Becker, E. B.; Miller, T., A numerical analysis of contact and limit-point behavior in a class of problems of finite elastic deformation, Comput. & Structures, 18, 5, 899-910 (1985) · Zbl 0533.73038
[11] Griewank, A.; Reddien, G. W., Characterization and computation of generalized turning points, SIAM J. Numer. Anal., 21, 1, 176-185 (1984) · Zbl 0536.65031
[12] Kalker, J. J., Survey of wheel-rail rolling contact theory, Vehicle System Dynamics, 5, 317-358 (1979)
[13] Keller, H. B., Numerical solution of bifurcation and nonlinear eigenvalue problems, (Rabinowitz, P. H., Applications of Bifurcation Theory (1977), Academic Press: Academic Press New York), 359-384 · Zbl 0581.65043
[14] Keller, H. B., Practical procedures in path following near limit point, (Glowinski, R.; Lions, J. L., Computing Methods in Applied Sciences and Engineering (1982), North-Holland: North-Holland Amsterdam) · Zbl 0963.65052
[15] Kikuchi, N.; Oden, J. T., Contact Problems in Elasticity (1986), SIAM: SIAM Philadelphia, PA · Zbl 0685.73002
[16] Kubicek, M.; Marek, M., Computational Methods in Bifurcation Theory and Dissipative Structures (1983), Springer: Springer New York · Zbl 0529.65035
[17] Love, A. E.H., A Treatise on the Mathematical Theory of Elasticity (1927), Dover: Dover New York · Zbl 0063.03651
[18] Miller, T. H., A finite element study of instabilities in rubber elasticity, (Ph.D. Dissertation (1982), University of Texas: University of Texas Austin, TX)
[19] Oden, J. T., Finite Elements of Nonlinear Continua (1972), McGraw-Hill: McGraw-Hill New York · Zbl 0235.73038
[20] Oden, J. T.; Kikuchi, N., Use of variational methods for constrained problems in elasticity, (Proceedings IUTAM Symposium on Variational Methods in the Mechanics of Solids. Proceedings IUTAM Symposium on Variational Methods in the Mechanics of Solids, Evanston, IL (1978)) · Zbl 0486.73068
[21] Oden, J. T., Analysis of incompressible elastic bodies by exterior penalty methods, (Proceedings U.S.-Europe Workshop on Nonlinear Finite Element Analysis in Structural Mechanics (1980), Springer: Springer Berlin) · Zbl 0458.73067
[22] Oden, J. T., Exterior penalty methods for contact problems in elasticity, (Wunderlich, W.; Stein, E.; Bathe, K. J., Nonlinear Finite Element Analysis in Structural Mechanics (1981), Springer: Springer Berlin), 655-665 · Zbl 0458.73067
[23] Oden, J. T.; Pires, E., Nonlocal and nonlinear friction laws and variational principles for contact problems in elasticity, J. Appl. Mech., 50, 1, 67-76 (1983) · Zbl 0515.73121
[24] Oden, J. T.; Becker, E. B.; Lin, T. L.; Hsieh, K. T., Numerical analysis of some problems related to the mechanics of pneumatic tires: Finite deformation/rolling contact of a viscoelastic cylinder and finite deformation of cord-reinforced rubber composites, (Research in Structures and Dynamics (1984), NASA), 297-307
[25] Oden, J. T., Qualitative Methods in Nonlinear Mechanics (1985), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0615.73083
[26] Oden, J. T.; Becker, E. B.; Lin, T. L.; Demkowicz, L., Formulation and finite element analysis of a general class of rolling contact problems with finite elastic deformations, (Whitemen, J. R., Mathematics of Finite Elements with Applications (1985), Academic Press: Academic Press London) · Zbl 0588.73200
[27] Oden, J. T.; Martins, J. A.C., Models and computational methods for dynamic friction phenomena, Comput. Meths. Appl. Mech. Engrg, 52, 527-634 (1985) · Zbl 0567.73122
[28] Padovan, J.; Zeid, I., On the development of rolling contact elements, (Browne, A. L.; Tsai, N. T., The General Problem of Rolling Contact, AMD-40 (1980), ASME: ASME New York)
[29] Padovan, J.; Arechaga, T., Formal convergence characteristics of ellipitically constrained incremental Newton-Raphson algorithms, Internat. J. Engrg. Sci., 20, 10, 1077-1097 (1982) · Zbl 0503.73065
[30] Riks, E., On the numerical solution of snapping problems in the theory of elastic stability, (SUDAAR No. 401 (1970), Stanford University: Stanford University Stanford, CA) · Zbl 0408.73040
[31] Riks, E., The application of Newton’s method to the problems of elastic stability, J. Appl. Mech., 39, 1060-1066 (1972) · Zbl 0254.73047
[32] Schapery, R. A., Analytical models for the deformation and adhesion components of rubber friction, Tire Sci. Technol., 6, 1, 3-47 (1978)
[33] Schapery, R. A., Analysis of rubber friction by the fast Fourier transform, Tire Sci. Technol., 6, 2, 89-113 (1978)
[34] Wempner, G. A., Discrete approximations related to nonlinear theories of solids, Internat. J. Solids and Structures, 7, 1581-1599 (1971) · Zbl 0222.73054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.