[1] |
Aronsson, G.; Mellander, I.: A deterministic model in biomathematics: asymptotic behavior and threshold conditions. Math. biosci. 49, 207-222 (1980) · Zbl 0433.92025 |

[2] |
Berman, A.; Plemmons, R. J.: Nonnegative matrices in the mathematical sciences. (1979) · Zbl 0484.15016 |

[3] |
Diekmann, O.: Integral equations and populations dynamics. Math. centrum syllabus 41, 117-149 (1979) · Zbl 0432.92020 |

[4] |
Diekmann, O.; Montijn, R.: Prelude to Hopf bifurcation in an epidemic model: analysis of the characteristic equation associated with a nonlinear Volterra integral equation. J. math. Biol. 14, 117-127 (1982) · Zbl 0487.92023 |

[5] |
Diekmann, O.; Van Gils, S. A.: Invariant manifolds for Volterra integral equations of convolution type. J. differential equations 54, 139-180 (1984) · Zbl 0543.45004 |

[6] |
K. Dietz and D. Schenzle, Mathematical models for infectious disease statistics, in A Celebration of Statistics (A.C. Atkinson and S.E. Fienberg, Eds.), to appear. · Zbl 0586.92017 |

[7] |
Gripenberg, G.: Periodic solutions to an epidemic model. J. math. Biol. 10, 271-280 (1980) · Zbl 0446.92022 |

[8] |
Gripenberg, G.: On some epidemic models. Quart. appl. Math. 39, 317-327 (1981) · Zbl 0476.92017 |

[9] |
Gripenberg, G.: On a nonlinear integral equation modelling an epidemic in an age-structured population. J. reine angew. Math. 341, 54-67 (1983) · Zbl 0514.92027 |

[10] |
Gripenberg, G.: Stability of periodic solutions of some integral equations. J. reine angew. Math. 331, 16-31 (1983) · Zbl 0468.45009 |

[11] |
Hethcote, H. W.: Qualitative analysis for communicable disease models. Math. biosci. 28, 335-356 (1976) · Zbl 0326.92017 |

[12] |
Hethcote, H. W.: An immunization model for a heterogeneous population. Theoret. population biol. 14, 338-349 (1978) · Zbl 0392.92009 |

[13] |
Hethcote, H. W.; Stech, H. W.; Van Der Driessche, P.: Nonlinear oscillations in epidemic models. SIAM J. Appl. math. 40, 1-9 (1981) · Zbl 0469.92012 |

[14] |
Hethcote, H. W.; Stech, H. W.; Den Driessche, P. Van: Stability analysis for models of diseases without immunity. J. math. Biol. 13, 185-198 (1981) · Zbl 0475.92014 |

[15] |
Hethcote, H. W.; Stech, H. W.; Den Driessche, P. Van: Periodicity and stability in epidemic models: A survey. Differential equations and applications in ecology, epidemics and population problems, 65-82 (1981) |

[16] |
Hethcote, H. W.; Tudor, D. W.: Integral equation models for endemic infectious diseases. J. math. Biol. 9, 37-47 (1980) · Zbl 0433.92026 |

[17] |
Hethcote, H. W.; Yorke, J. A.: Gonorrhea transmission dynamics and control. Springer-verlag lecture notes in biomathematics 56 (1984) · Zbl 0542.92026 |

[18] |
Hirsch, M. W.: The differential equations approach to dynamical systems. Bull. amer. Math. soc. 11, 1-64 (1984) · Zbl 0541.34026 |

[19] |
Hoppensteadt, G.: Mathematical theories of populations: demographics, genetics and epidemics. (1975) · Zbl 0304.92012 |

[20] |
Kermack, W. O.; Mckendrick, A. G.: A contribution to the mathematical theory of epidemics. Proc. roy. Soc. London ser. A 155, 700-721 (1927) · Zbl 53.0517.01 |

[21] |
Krasnoselskii, M. A.: Positive solutions of operator equations. (1964) |

[22] |
Lajmanovich, A.; Yorke, J. A.: A deterministic model for gonorrhea in a nonhomogeneous population. Math. biosci. 28, 221-236 (1976) · Zbl 0344.92016 |

[23] |
Londen, S. O.: Integral equations of Volterra type. Mathematics of biology (1981) |

[24] |
Miller, R. K.: On the linearization of Volterra integral equations. J. math. Anal. appl. 23, 198-208 (1968) · Zbl 0167.40902 |

[25] |
Nallaswamy, R.; Shukla, J. B.: Effects of dispersal on the stability of a gonorrhea endemic model. Math. biosci. 61, 63-72 (1982) · Zbl 0523.92021 |

[26] |
Nold, A.: Heterogeneity in disease-transmission modeling. Math. biosci. 52, 227-240 (1980) · Zbl 0454.92020 |

[27] |
Post, W. M.; Deangelis, D. L.; Travis, C. C.: Endemic disease in environments with spatially heterogeneous host populations. Math. biosci. 63, 289-302 (1983) · Zbl 0528.92018 |

[28] |
Rushton, S.; Mautner, A. J.: The deterministic model of a simple epidemic for more than one community. Biometrika 42, 126-132 (1955) · Zbl 0064.39102 |

[29] |
D. Schenzle, An age structured model of pre- and post-vaccination measles transmission, IMA J. Math. Appl. Biol. Med., to appear. · Zbl 0611.92021 |

[30] |
Thieme, H. R.: Global asymptotic stability in epidemic models. Lecture notes in mathematics 1017, 608-615 (1983) |

[31] |
H.R. Thiema, Local stability in epidemic models for heterogeneous populations, in Conference on Mathematics in Biology and Medicine, Bari, 1983 (V. Capasso, Ed.), Springer Lecture in Biomathematics, to appear. |

[32] |
H.R. Thieme, Renewal theorems for some mathematical models in epidemiology, J. Integral Equations, to appear. · Zbl 0565.92020 |

[33] |
Tudor, D. W.: An age dependent epidemic model with application to measles. Math. biosci. 73, 131-147 (1985) · Zbl 0572.92023 |

[34] |
Varga, R. S.: Matrix iterative analysis. (1962) |