zbMATH — the first resource for mathematics

Petri nets for modelling metabolic pathways: a survey. (English) Zbl 1206.68209
Summary: In the last 15 years, several research efforts have been directed towards the representation and the analysis of metabolic pathways by using Petri nets. The goal of this paper is twofold. First, we discuss how the knowledge about metabolic pathways can be represented with Petri nets. We point out the main problems that arise in the construction of a Petri net model of a metabolic pathway and we outline some solutions proposed in the literature. Second, we present a comprehensive review of recent research on this topic, in order to assess the maturity of the field and the availability of a methodology for modelling a metabolic pathway by a corresponding Petri net.

68Q85 Models and methods for concurrent and distributed computing (process algebras, bisimulation, transition nets, etc.)
92C40 Biochemistry, molecular biology
Full Text: DOI
[1] Agerwala T (1974) A complete model for representing the coordination of asynchronous processes. Hopkins computer research report 32. John Hopkins University
[2] Ajmone Marsan M, Balbo G, Conte G, Donatelli S, Franceschinis G (1995) Modelling with generalized stochastic Petri nets. Wiley series in parallel computing. Wiley, New York · Zbl 0843.68080
[3] Atkin P, de Paula J (2006) Atkins’ physical chemistry. Oxford University Press, Oxford
[4] Balbo G (2007) Introduction to generalized stochastic Petri nets. In: Bernardo M and Hillston J (eds) Formal methods for performance evaluation, vol 4486 of LNCS. Springer, Berlin, pp 83–131 · Zbl 1323.68400
[5] Beasley JE, Planes FJ (2007) Recovering metabolic pathways via optimization. Bioinformatics 23(1):92–98 · Zbl 05325385 · doi:10.1093/bioinformatics/btl554
[6] BioCarta: charting pathways of life. http://www.biocarta.com
[7] BioCyc: database collection. http://www.BioCyc.org
[8] Biomodels database. http://www.ebi.ac.uk/biomodels
[9] Biomolecular interaction networks database. http://www.bond.unleashedinformatics.com
[10] Borger S, Liebermeister W, Klipp E (2006) Prediction of enzyme kinetic parameters based on statistical learning. Genome Inf Ser 1(17):80–87
[11] Borger S, Uhlendorf J, Helbig A, Liebermeister W (2007) Integration of enzyme kinetic data from various sources. In Silico Biol 7(S1 09)
[12] Breitling R, Gilbert D, Heiner M, Orton R (2008) A structured approach for the engineering of biochemical network models, illustrated for signalling pathways. Brief Bioinform 9(5):404–421 · doi:10.1093/bib/bbn026
[13] BRENDA: the comprehensive enzyme information system. http://www.brenda-enzymes.info
[14] Busi N (2002) Analysis issues in Petri nets with inhibitor arcs. Theor Comput Sci 275(1–2):127–177 · Zbl 1026.68097 · doi:10.1016/S0304-3975(01)00127-X
[15] Caspi R, Foerster H, Fulcher CA, Kaipa P, Krummenacker M, Latendresse M, Paley S, Rhee SY, Shearer AG, Tissier C, Walk TC, Zhang P, Karp PD (2008) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 36(Database Issue):D623–D631
[16] Chang A, Scheer M, Grote A, Schomburg I, Schomburg D (2009) BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009. Nucleic Acids Res 37(Database Issue):D588–D592
[17] Chaouiya C (2007) Petri net modelling of biological networks. Brief Bioinform 8(4):210–219 · doi:10.1093/bib/bbm029
[18] Chaouiya C, Remy E, Thieffry D (2008) Petri net modelling of biological regulatory networks. J Discrete Algorithms 6(2):165–177 · Zbl 1153.90336 · doi:10.1016/j.jda.2007.06.003
[19] Chatraryamontri A, Ceol A, Montecchi Palazzi L, Nardelli G, Schneider MV, Castagnoli L, Cesareni G (2007) MINT: the Molecular INTeraction database. Nucleic Acids Res 35(Database Issue):D572–D574
[20] Chen M (2002) Modelling and simulation of metabolic networks: Petri nets approach and perspective. In: Proceedings of the European simulation multiconference on modelling and simulation, pp 441–444
[21] Chen M, Hofestädt R (2003) Quantitative Petri net model of gene regulated metabolic networks in the cell. In Silico Biol 3(0029):347–365
[22] Chen M, Freier A, Koehler J, Ruegg A (2002) The biology Petri net markup language. In: Promise2002. Lecture notes in informatics, pp 150–161
[23] Crampin EJ, Schnell S, McSharry PE (2004) Matematical and computational techniques to deduce complex biochemical reaction mechanisms. Prog Biophys Mol Biol 86:77–112 · doi:10.1016/j.pbiomolbio.2004.04.002
[24] Database of Interacting Proteins. http://www.dip.doe-mbi.ucla.edu
[25] David R, Alla H (2005) Discrete, continuous, and hybrid Petri nets. Springer, Heidelberg · Zbl 1074.93002
[26] de Jong H (2002) Modelling and simulation of genetic regulatory systems: a literature review. J Comput Biol 9(1):67–103 · doi:10.1089/10665270252833208
[27] Desel J, Esparza J (2005) Free choice Petri nets. Cambridge University Press, Cambridge · Zbl 0836.68074
[28] Design/CPN: computer tool for coloured petri nets. http://www.daimi.au.dk/designCPN
[29] Deville Y, Gilbert D, van Helden J, Wodak SJ (2003) An overview of data models for the analysis of biochemical pathways. Brief Bioinform 4(3):246–259 · Zbl 1112.92318 · doi:10.1093/bib/4.3.246
[30] Doi A, Fujita S, Matsuno H, Nagasaki M, Miyano S (2004) Constructing biological pathway models with hybrid functional Petri net. In Silico Biol 4(0023):271–291
[31] Doi A, Nagasaki M, Matsuno H (2006) Simulation-based validation of the p53 transcriptional activity with hybrid functional Petri net. In Silico Biol 6(0001):1–13
[32] Edwards JS, Covert M, Palsson BO (2002) Metabolic modelling of microbes: the flux-balance approach. Environ Microbiol 4(3):133–140 · doi:10.1046/j.1462-2920.2002.00282.x
[33] ENZYME: enzyme nomenclature database. http://www.expasy.ch/enzyme
[34] Esparza J, Heljanko K (2008) Unfoldings–a partial order approach to model checking. EACTS monographs in theoretical computer science. Springer, Berlin · Zbl 1153.68035
[35] Esparza J, Nielsen M (1994) Decidability issues for Petri nets–a survey. J Inf Process Cybern EIK 30(3):143–160 · Zbl 0838.68082
[36] Extensible Markup Language. http://www.w3.org/XML
[37] Fell DA (1992) Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J 286:313–330
[38] Ganty P, Raskin J-F, Van Begin L (2007) From many places to few: automatic abstraction refinement for Petri nets. In: Kleijn J, Yakovlev A (eds) Proceedings of ICATPN’07, vol 4546 of LNCS. Springer, Berlin, pp 124–143 · Zbl 1226.68054
[39] Genrich H, Küeffner R, Voss K (2000) Executable Petri net models for the analysis of metabolic pathways. In: Proceedings of the workshop on practical use of high-level Petri nets, pp 1–14
[40] Gibson MA, Bruck J (2000) Efficient exact stochastic simulation of chemical systems with many species and many channels. J Phys Chem 25(104):1876–1889
[41] Gilbert D, Heiner M (2006) From Petri nets to differential equations–an integrative approach for biochemical networks analysis. In: Petri nets and other models of concurrency–ICATPN 2006, vol 4024 of LNCS. Springer, Berlin, pp 181–200 · Zbl 1234.68298
[42] Gilbert D, Heiner M, Lehrack S (2007) A unifying frameworks for modelling and analysing biochemical pathways using Petri nets. In: Proceedings of the workshop on computational methods in systems biology (CMSB), pp 200–216
[43] Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 25(81):2340–2361 · doi:10.1021/j100540a008
[44] Goss PJ, Peccoud J (1998) Quantitative modeling of stochastic systems in molecular biology by using stochastic Petri nets. Proc Natl Acad Sci USA 95(12):6750–6755 · doi:10.1073/pnas.95.12.6750
[45] Grafahrend-Belau E, Schreiber F, Heiner M, Sackmann A, Junker BH, Grunwald S, Speer A, Winder K, Koch I (2008) Modularization of biochemical networks based on classification of Petri net T-invariants. BMC Bioinform 9:90
[46] Grunwald S, Speer A, Ackermann J, Koch I (2008) Petri net modelling of gene regulation of the Duchenne muscular dystrophy. BioSystems 92:189–205 · doi:10.1016/j.biosystems.2008.02.005
[47] Hardy S, Robillard PN (2004) Modeling and simulation of molecular biology systems using Petri nets: modeling goals of various approaches. J Bioinform Comput Biol 2(4):619–637 · doi:10.1142/S0219720004000764
[48] Hardy S, Robillard PN (2008) Petri net-based method for the analysis of the dynamics of signal propagation in signaling pathways. Bioinformatics 24(2):209–217 · Zbl 05511434 · doi:10.1093/bioinformatics/btm560
[49] Heiner M, Koch I (2004) Petri net based model validation in systems biology. In: Petri nets and other models of concurrency–ICATPN 2004, vol 3099 of LNCS. Springer, Berlin, pp 216–237 · Zbl 1094.68584
[50] Heiner M, Koch I, Schuster S (2000) Using time-dependent Petri nets for the analysis of metabolic networks. In: Hofestadt R, Lautenbach K, Lange M (eds) Workshop Modellierung und Simulation Metabolischer Netzwerke, preprint no. 10. Otto-von-Guericke University of Magdeburg, pp 15–21
[51] Heiner M, Koch I, Voss K (2001) Analysis and simulation of steady states in metabolic pathways with Petri nets. In: Workshop and tutorial on practical use of coloured Petri nets and the CPN tools (CPN’01), pp 15–34
[52] Heiner M, Koch I, Will J (2004) Model validation of biological pathways using Petri nets–demostrated for apoptosis. Biosystems 75:15–28 · doi:10.1016/j.biosystems.2004.03.003
[53] Heiner M, Gilbert D, Donaldson R (2008) Petri nets for systems and synthetic biology. In: Proceedings of SFM’08, vol 5016 of LNCS. Springer, Berlin, pp 215–264
[54] Heinrich R, Rapoport TA (1974) A linear steady-state treatment of enzymatic chains. Eur J Biochem 42:89–95 · doi:10.1111/j.1432-1033.1974.tb03318.x
[55] Hofer T, Heinrich R (1993) A second order approach to metabolic control analysis. J Theor Biol 164:85–102 · doi:10.1006/jtbi.1993.1141
[56] Hofestädt R (1994) A Petri net application of metbolic processes. J Syst Anal Model Simul 16:113–122 · Zbl 0829.92010
[57] Hofestädt R, Thelen S (1998) Quantitative modeling of biochemical networks. In Silico Biol 1(0006)
[58] Jensen K (1997) Coloured Petri nets. Basic concepts, analysis methods and practical use. Monographs in Theoretical Computer Science. Springer, Berlin · Zbl 0883.68098
[59] Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 34:D480–D484
[60] Kant K (1992) Introduction to computer system performance evaluation. McGraw-Hill Inc., New York
[61] Kegg Markup Language manual. http://www.genome.ad.jp/kegg/docs/xml
[62] KEGG pathway database–Kyoto University Bioinformatics Centre. http://www.genome.jp/kegg/pathway.html
[63] Kielbassa J, Bortfeldt R, Schuster S, Koch I (2008) Modeling of the U1 snRNP assembly pathway in alternative splicing in human cell using Petri nets. Comput Biol Chem 33:46–61 · Zbl 1158.92016
[64] Kitano H (2002a) Computational systems biology. Nature 420:206–210 · doi:10.1038/nature01254
[65] Kitano H (2002b) Systems biology: a brief overview. Science 295:1662–1664 · doi:10.1126/science.1069492
[66] Koch I, Heiner M (2008) Petri nets. In: Junker BH, Schreiber F (eds) Analysis of biological networks, book series in bioinformatics. Wiley, New York, pp 139–179
[67] Koch I, Junker BH, Heiner M (2005) Application of Petri net theory for modelling and validation of the sucrose breakdown pathway in the potato tuber. Syst Biol 21(7):1219–1226
[68] Koza JR (2003) Handbook of metaheuristics–chap 7: automatic synthesis of topologies and numerical parameters, vol 57 of International Series in Operations Research and Management Science. Springer, New York
[69] Liebermeister W, Uhlendorf J, Borger S, Klipp E (2007) Automatic integration of kinetic data for metabolic network modelling. In: ICSB 2007, ACM, pp 80–87
[70] Lipton RJ (1976) The reachability problem requires exponential space, research report 62. Yale University, New Haven
[71] Mandel J, Palfreyman NM, Lopez JA, Dubitzky W (2004) Representing bioinformatics causality. Brief Bioinform 5(3):270–283 · doi:10.1093/bib/5.3.270
[72] Marwan W, Sujatha A, Starostzik C (2005) Reconstructing the regulatory network controlling commitment and sporulation in Physarum polycephalum based on hierarchical Petri net modelling and simulation. J Theor Biol 236:349–365 · doi:10.1016/j.jtbi.2005.03.018
[73] Matsuno H, Fujita S, Doi A, Nagasaki M, Miyano S (2003a) Towards biopathway modeling and simulation. In: ICATPN 2003, vol 2679 of LNCS. Springer, Berlin, pp 3–22 · Zbl 1112.92326
[74] Matsuno H, Tanaka Y, Aoshima H, Doi A, Matsui M, Miyano S (2003b) Biopathway representation and simulation on hybrid functional Petri net. In Silico Biol 3(0032):389–404
[75] Matsuno H, Li C, Miyano S (2006) Petri net based descriptions for systematic understanding of biological pathways. EICE Trans Fundam Electron Commun Comput Sci E89-A(11):3166–3174 · doi:10.1093/ietfec/e89-a.11.3166
[76] Mayr EW (1981) Persistence of vector replacement systems is decidable. Acta Inform 15:309–318 · Zbl 0454.68048 · doi:10.1007/BF00289268
[77] Merlin PM, Farber DJ (1976) Recoverability of communication protocols–implications of a theoretical study. IEEE Trans Commun 24(9):1036–1043 · Zbl 0362.68096 · doi:10.1109/TCOM.1976.1093424
[78] MetaCyc encyclopedia of metabolic pathways. http://www.metacyc.org
[79] MINT: the Molecular INTeraction database. http://www.mint.bio.uniroma2.it
[80] Miyano S, Matsuno H (2004) How to model and simulate biological pathways with Petri Nets–a new challenge for system biology. In: International conference on applications and theory of Petri nets, Bologna, Italy
[81] Moles CG, Mendes P, Banga R (2003) Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res 13:2467–2474 · doi:10.1101/gr.1262503
[82] Molloy MK (1981) On the integration of delay and throughput measures in distributed processing models. PhD thesis, UCLA, Los Angeles
[83] Murata T (1989) Petri nets: properties, analysis, and applications. Proc IEEE 77(4):541–580 · doi:10.1109/5.24143
[84] Nagasaki M, Doi A, Matsuno H, Miyano S (2005) Petri net based description and modeling of biological pathways. In: Proceedings of the algebraic biology 2005. Universal Academy Press, pp 19–31
[85] Oliveira JS, Bailey CG, Jones-Oliveira JB, Dixon DA, Gull DW, Chandler ML (2003) A computational model for the identification of biochemical pathways in the Krebs cycle. J Comput Biol 10(1):57–82 · doi:10.1089/106652703763255679
[86] Pastor E, Cortadella J, Peña M (1999) Structural methods to improve the symbolic analysis of Petri nets. In: Donatelli S, Kleijn HCM (eds) Proceedings of ICATPN’99, vol 1639 of LNCS. Springer, Berlin, pp 26–45
[87] PED–a hierarchical Petri net editor. http://www.dssz.informatik.tu-cottbus.de/index.html?/software/ped.htmll
[88] Peleg M, Yeh I, Altman RB (2002) Modelling biological processes using workflow and Petri net models. Bioinformatics 18(6):825–837 · doi:10.1093/bioinformatics/18.6.825
[89] Peleg M, Rabin D, Altman RB (2005) Using Petri net tools to study properties and dynamics of biological systems. J Am Med Inform Assoc 12:181–199 · doi:10.1197/jamia.M1637
[90] Peterson JL (1981) Petri net theory and the modelling of systems. Prentice-Hall, Englewood Cliffs · Zbl 0461.68059
[91] Petri Net Markup Language. http://www.pnml.org · Zbl 1283.68260
[92] Petri net tools. http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools
[93] Popova-Zeugmann L, Heiner M and Koch I (2005) Timed Petri nets for modelling and analysis of biochemical networks. Fundam Inform 67:149–162 · Zbl 1096.68110
[94] REACTOME a curated knowledgebase of biological pathways. http://www.reactome.org
[95] Reddy VN (1994) Modeling biological pathways: a discrete event systems approach. Master’s thesis, The Universisty of Maryland, M.S. 94-4
[96] Reddy VN, Mavrovouniotis ML, Liebman MN (1993) Petri net representations in metabolic pathways. In: ISMB93: first international conference on intelligent systems for molecular biology. AAAI Press, pp 328–336
[97] Reddy VN, Liebman MN, Mavrovouniotis ML (1996) Qualitative analysis of biochemical reaction systems. Comput Biol Med 26(1):9–24 · doi:10.1016/0010-4825(95)00042-9
[98] Reisig W (1985) Petri nets: an introduction. EACTS monographs on theoretical computer science. Springer-Verlag, Berlin
[99] Sackmann A, Heiner M, Koch I (2006) Application of Petri net based analysis techniques to signal transduction pathways. BMC Bioinform 7:482
[100] Sackmann A, Formanowicz D, Formanowicz P, Koch I, Blazewicz J (2007) An analysis of the Petri net based model of the human body iron homeostasis process. Comput Biol Chem 31:1–10 · Zbl 1124.92007 · doi:10.1016/j.compbiolchem.2006.09.005
[101] Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D (2004) The database of interacting proteins: 2004 update. Nucleic Acids Res 32(Database Issue):D449–D451
[102] SBML: Systems Biology Markup Language. http://www.sbml.org
[103] Schilling CH, Schuster S, Palsson BO, Heinrich R (1999) Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic era. Biotechnol Prog 15:296–303 · doi:10.1021/bp990048k
[104] Schilling CH, Letscherer D, Palsson BO (2000) Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol 203:229–248 · doi:10.1006/jtbi.2000.1073
[105] Schroter C, Schwoon S, Esparza J (2003) The model checking kit. In: Proceedings of the 24th international conference on application and theory of Petri nets (ICATPN 03), vol 2697 of LNCS. Springer, Berlin, pp 463–472
[106] Schuster S, Hilgetag C (1994) On elementary flux modes in biochemical reaction systems at steady state. J Biol Syst 2:165–182 · doi:10.1142/S0218339094000131
[107] Schuster S, Dandekar T, Fell DA (1999) Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol 17:53–60 · doi:10.1016/S0167-7799(98)01290-6
[108] Schuster S, Fell DA, Dandekar T (2000) A general definition of metabolic pathway useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol 18:326–332 · doi:10.1038/73786
[109] Schuster S, Pfeiffer T, Moldenhauer F, Koch I, Dandekar T (2002) Exploring the pathway structure of metabolism: decomposition into subnetworks and application to Mycoplasma pneumoniae. Bioinformatics 18(2):351–361 · doi:10.1093/bioinformatics/18.2.351
[110] Shaw O, Koelmans A, Steggles J, Wipat A (2004) Applying Petri nets to systems biology using XML technologies. In: Kindler E (ed) Proceedings of the workshop on the definition, implementation and application of a standard interchange format for Petri nets. Satellite event of ATPN, pp 11–25
[111] Shaw O, Steggles J, Wipat A (2006) Automatic parameterisation of stochastic Petri net models of biological networks. Electron Notes Theor Comput Sci 151(3):111–129. Proceedings of the second international workshop on the practical application of stochastic modeling (PASM 2005).
[112] Simão E, Remy E, Thieffry D, Chaouiya C (2005) Qualitative modelling of regulated metabolic pathways: application to the tryptophan biosynthesis in E. coli. Syst Biol 21(2):ii190–ii196
[113] SNOOPY: a software tool to design and animate hierarchical graphs. http://www.dssz.informatik.tu-cottbus.de/index.html?/software/snoopy.html
[114] Starke PH, Roch S (1999) The integrated net analyzer. Humbolt University, Berlin. http://www.informatik.hu-berlin.de/starke/ina.html
[115] Tovchigrechko A (2006) Model checking using interval decision diagrams. PhD thesis, Department of Computer Science, BTU Cottbus
[116] TRANSPATH: the pathway database. http://www.biobase-international.com
[117] Valk R (1978) Self-modifying nets, a natural extension of Petri nets. In: Ausiello G, Böhm C (eds) Proceedings of ICALP’78, vol 62 of LNCS. Springer, Berlin, pp 464–476 · Zbl 0415.68025
[118] Valk R, Vidal-Naquet G (1981) Petri nets and regular languages. J Comput Syst Sci 23(3):299–325 · Zbl 0473.68057 · doi:10.1016/0022-0000(81)90067-2
[119] Varma A, Palsson BO (1994) Metabolic flux balancing: basic concepts, scientific and practical use. Bio/Technology 12:994–998 · doi:10.1038/nbt1094-994
[120] Voet DJ, Voet JG (2004) Biochemistry. Wiley, New York
[121] Voss K, Heiner M, Koch I (2003) Steady state analysis of metabolic pathways using Petri nets. In Silico Biol 3(0031):367–387
[122] Wiekert W (2002) Modelling and simulation: tools for metabolic engineering. J Biotechnol 94(1):37–63 · doi:10.1016/S0168-1656(01)00418-7
[123] Wilkinson DJ (2006) Stochastic modelling for systems biology. Chapman and Hall/CRC, Boca Raton
[124] Zevedei-Oancea I, Schuster S (2003) Topological analysis of metabolic networks based on Petri net theory. In Silico Biol 3(0029):323–345
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.