zbMATH — the first resource for mathematics

Categories of orthomodular posets. (English) Zbl 0583.06005
The author considers categories of orthomodular posets \(O_ 1\), \(O_ 2\), \(O_ 3\) which differ only by the choice of morphisms \(f: P\to Q\) for orthomodular posets P, Q. These maps satisfy (i) \(a\leq b\) implies f(a)\(\leq f(b)\), (ii) \(f(a')=f(a)'\) and (iii) \(a\in C(P)\) implies f(a)\(\in C(Q).\)
For \(O_ 1\) it is required that (iv) \(f(a\vee b)=f(a)\vee f(b)\) for \(a\in C(P)\) and \(a\leq b'\) holds, for \(O_ 2\) that (v) \(f(a\vee b)=f(a)\vee f(b)\) for \(a\leq b'\) holds and for \(O_ 3\) that (vi) \(f(a\vee b)=f(a)\vee f(b)\) holds whenever \(a\vee b\) exists.
It is \(O_ 1\supset O_ 2\supset O_ 3\) and Boolean algebras are reflective and coreflective in all three categories. Several conditions for reflections to be embeddings are given.
Reviewer: G.Kalmbach

06A06 Partial orders, general
06C15 Complemented lattices, orthocomplemented lattices and posets
06B25 Free lattices, projective lattices, word problems
Full Text: EuDML
[1] ALDA V.: On 0-1 measure for projectors. Aplikace Matematiky 25, 1980, 373-374. · Zbl 0455.46057
[2] BRABEC J., PTÁK P.: On compatibility in quantum logics. Foundation of Physics, 12, 1982, 207-212.
[3] GREECHIE R.: Orthomodular lattices admitting no states. Journ. Comb. Theory 10, 1971, 119-132. · Zbl 0219.06007
[4] GUDDER S.: Spectral methods for a generalized probability theory. Trans. Amer. Math. Soc. 119, 1965, 420-422. · Zbl 0161.46105
[5] GUDDER S.: Stochastic Methods in Quantum Mechanics. Elsevier North Holland, Inc., 1979. · Zbl 0439.46047
[6] KLUKOWSKI J.: On Boolean orthomodular posets. Demonstratio Mathematica VIII, 1975, 405-422. · Zbl 0312.06007
[7] MAEDA F., MAEDA S.: Theory of Symmetric Lattices. Berlin and New York, Springer-Verlag, 1970. · Zbl 0219.06002
[8] MAC LANE S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, 5. Springer-Verlag, New York, Heidelberg, Berlin, 1971. · Zbl 0232.18001
[9] MACZYNSKI M., TRACZYK T.: A characterization of orthomodular partially ordered sets admitting a full set of states. Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys. 21, 1973, 3-8. · Zbl 0265.06003
[10] MAŇASOVÁ V., PTÁK P.: On states on the product of logics. Int. J. Theor. Phys. 20, 1981, 451-456. · Zbl 0482.03030
[11] PTÁK P.: Weak dispersion-free states and the hidden variables hypothesis. J. Math. Phys. 24, 1983, 839-841. · Zbl 0508.60006
[12] PULMANNOVÁ S.: Compatibility and partial compatibility in quantum logics. Ann. Inst. Henri Poincare 34, 1980, 391-403.
[13] VARADARAJAN V.: Geometry of Quantum Theory. 1. Princeton, New Jersey, 1968. · Zbl 0155.56802
[14] ZIERLER N., SCHLESSINGER M.: Boolean embeddings of orthomodular sets and quantum logics. Duke J. Math. 32, 1965, 251-262. · Zbl 0171.25403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.