zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The discrete self-trapping equation. (English) Zbl 0583.34026
A simple system of ordinary differential equations is introduced which has an application to the dynamics of small molecules, molecular crystals, self-trapping in amorphous semiconductors, and globular proteins. Analytical, numerical and perturbation methods are used to study the properties of stationary solutions. General solution trajectories can be either sinusoidal, periodic, quasiperiodic or chaotic.

34C05Location of integral curves, singular points, limit cycles (ODE)
92B05General biology and biomathematics
Full Text: DOI
[1] Landau, L. D.: Phys. zeit. Sowjetunion. 3, 644 (1933)
[2] Pekar, S.: J. phys. U.S.S.R.. 10, 347 (1946)
[3] Frölich, H.: Adv. in phys.. 3, 325 (1954)
[4] Holstein, T.: Ann. phys.. 8, 343 (1959)
[5] De Raedt, H.; Lagendijk, A.: Phys. rev.. 80, 1671 (1984)
[6] . Sov. phys. JETP 34, 62 (1972)
[7] Hasegawa, A.; Kodama, Y.: Proc. IEEE. 69, 1145 (1981)
[8] Larraza, A.; Putterman, S.: Theory of nonpropagating hydrodynamic solitons. Phys. lett. A 103, 15 (1984) · Zbl 0626.76026
[9] . Sov. phys. Usp. 25, 899 (1982)
[10] Macneil, L.; Scott, A. C.: Physica scripta. 29, 284 (1984)
[11] Careri, G.; Buontempo, U.; Galluzzi, F.; Scott, A. C.; Gratton, E.; Shyamsunder, E.: Spectroscopic evidence for davydov-like solitons in acetanilide. Phys. rev. 30, 4689 (1984)
[12] Volkenstein, M. V.: J. theor. Biol.. 34, 193 (1972)
[13] Green, D. E.; Ji, S.: Proc. nat. Acad. sci. (USA). 69, 726 (1972)
[14] Lomdahl, P. S.: Nonlinear dynamics of globular protein. Nonlinear electrodynamics in biological systems, 143 (1984)
[15] Eilbeck, J. C.; Lomdahl, P. S.; Scott, A. C.: Soliton structure in crystalline acetanilide. Phys. rev. 30, 4703 (1984)
[16] Thouless, D. J.: Phys. rep.. 13, 95 (1974)
[17] Allen, J. P.; Colvin, J. T.; Stinson, D. G.; Flynn, C. P.; Stapleton, H. J.: Biophys. J.. 38, 299 (1982)
[18] Alexander, S.; Laermans, C.; Orbach, R.; Rosenberg, H. M.: Phys. rev.. 28, 4615 (1983)
[19] Scott, A. C.; Lomdahl, P. S.; Eilbeck, J. C.: Between the local mode and normal mode limits. Chem. phys. Lett. 113, 29 (1985)
[20] Ellis, J. W.: Trans. Faraday soc.. 25, 888 (1929)
[21] Sage, M. L.; Jortner, J.: Adv. chem. Phys.. 47, 293 (1981)
[22] Collins, M. A.: Adv. chem. Phys.. 53, 225 (1983)
[23] Kubicek, M.: ACM trans. Math. soft.. 2, 98 (1976)
[24] J. Carr and J.C. Eilbeck, Stability of stationary solutions of discrete self-trapping equation (to appear in Phys. Lett.).
[25] Dodd, R. K.; Eilbeck, J. C.; Gibbon, J. D.; Morris, H. C.: Solitons and nonlinear wave equations. (1982) · Zbl 0496.35001
[26] Landau, L. D.: Dok. akad. Nauk. SSSR. 44, 339 (1944)
[27] Genesis 7: 11 through 8: 5. · Zbl 0462.60094