Helffer, Bernard; Robert, Didier Étude du spectre pour un opérateur globalement elliptique dont le symbole de Weyl présente des symétries. I: Action des groupes finis. (Study of the spectrum of a global elliptic operator whose Weyl symbol shows symmetries. I: Action of finite groups). (French) Zbl 0583.58029 Am. J. Math. 106, 1199-1236 (1984). The authors study the spectrum of a global elliptic pseudo-differential operator Q, whose Weyl symbol is invariant under the action of a finite group G. To each irreducible character \(\chi\) of G there corresponds a projection P of \(L^ 2({\mathbb{R}}^ n)\) such that \([Q,P]=0\). They estimate the asymptotic distribution of the eigenvalues of \(Q|_{Im P}\) in terms of \(\chi\) and the distribution of the eigenvalues of Q. Reviewer: J.Marschall Cited in 2 ReviewsCited in 8 Documents MSC: 58J50 Spectral problems; spectral geometry; scattering theory on manifolds Keywords:asymptotic distribution of the spectrum; global elliptic pseudo- differential operator; Weyl symbol PDF BibTeX XML Cite \textit{B. Helffer} and \textit{D. Robert}, Am. J. Math. 106, 1199--1236 (1984; Zbl 0583.58029) Full Text: DOI OpenURL