zbMATH — the first resource for mathematics

A language for biochemical systems: design and formal specification. (English) Zbl 1275.92020
Priami, Corrado (ed.) et al., Transactions on Computational Systems Biology XII. Special issue on modeling methodologies. Berlin: Springer (ISBN 978-3-642-11711-4/pbk). Lecture Notes in Computer Science 5945. Lecture Notes in Bioinformatics. Journal Subline, 77-145 (2010).
Summary: This paper introduces a Language for Biochemical Systems (LBS) which combines rule-based approaches to modelling with modularity. It is based on the Calculus of Biochemical Systems (CBS) which affords modular descriptions of metabolic, signalling and regulatory networks in terms of reactions between modified complexes, occurring concurrently inside a hierarchy of compartments and with possible cross-compartment interactions and transport. Additional features of LBS, targeted towards practical and large-scale applications, include species expressions for manipulating large complexes in a concise manner, parameterised modules with a notion of subtyping for writing reusable modules, and nondeterminism for handling combinatorial explosion. These features are demonstrated through examples. A formal specification of LBS is then given through an abstract syntax and a general semantics which is parametric on a structure pertaining to the specific choice of target semantical objects. Examples of such structures for the specific cases of Petri nets, coloured Petri nets, ODEs and continuous-time Markov chains are also given.
For the entire collection see [Zbl 1204.92037].

92C40 Biochemistry, molecular biology
60J28 Applications of continuous-time Markov processes on discrete state spaces
68Q85 Models and methods for concurrent and distributed computing (process algebras, bisimulation, transition nets, etc.)
92C42 Systems biology, networks
Full Text: DOI
[1] Blanchard, P., Devaney, R.L., Hall, G.R.: Differential Equations. Brooks/Cole (2002)
[2] Cai, Y., Hartnett, B., Gustafsson, C., Peccoud, J.: A syntactic model to design and verify synthetic genetic constructs derived from standard biological parts. Bioinformatics 23(20), 2760–2767 (2007) · doi:10.1093/bioinformatics/btm446
[3] Cai, Y., Lux, M.W., Adam, L., Peccoud, J.: Modeling structure-function relationships in synthetic DNA sequences using attribute grammars. PLoS Comput. Biol. 5(10), e1000529 (2009) · doi:10.1371/journal.pcbi.1000529
[4] Calder, M., Gilmore, S., Hillston, J.: Modelling the influence of RKIP on the ERK signalling pathway using the stochastic process algebra PEPA. Trans. on Comput. Syst. Biol. VII 4230, 1–23 (2006) · Zbl 05282615 · doi:10.1007/11905455_1
[5] Cardelli, L.: Brane calculi. In: Danos, V., Schächter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–280. Springer, Heidelberg (2005) · Zbl 1088.68657 · doi:10.1007/978-3-540-25974-9_24
[6] Chabrier-Rivier, N., Fages, F., Soliman, S.: The biochemical abstract machine BIOCHAM. In: Danos, V., Schächter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 172–191. Springer, Heidelberg (2005) · Zbl 1088.68817 · doi:10.1007/978-3-540-25974-9_14
[7] Chen, W.W., Schoeberl, B., Jasper, P.J., Niepel, M., Nielsen, U.B., Lauffenburger, D.A., Sorger, P.K.: Input-output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data. Mol. Syst. Biol. 5(239) (2009) · doi:10.1038/msb.2008.74
[8] Ciocchetta, F., Hillston, J.: Bio-PEPA: An extension of the process algebra PEPA for biochemical networks. Electron. Notes Theor. Comput. Sci. 194(3), 103–117 (2008) · Zbl 1279.68254 · doi:10.1016/j.entcs.2007.12.008
[9] Danos, V.: Agile modelling of cellular signalling. In: Computation in Modern Science and Engineering, vol. 2, Part A 963, pp. 611–614 (2007) · doi:10.1063/1.2836156
[10] Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling and model perturbation. TCSB 5750(11), 116–137 (2009)
[11] Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-based modelling of cellular signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 17–41. Springer, Heidelberg (2007) · Zbl 1151.68723 · doi:10.1007/978-3-540-74407-8_3
[12] Dematté, L., Priami, C., Romanel, A.: Modelling and simulation of biological processes in BlenX. SIGMETRICS Performance Evaluation Review 35(4), 32–39 (2008) · Zbl 05443438 · doi:10.1145/1364644.1364653
[13] Faeder, J.R., Blinov, M.L., Hlavacek, W.S.: Graphical rule-based representation of signal-transduction networks. In: Liebrock, L.M. (ed.) Proc. 2005 ACM Symp. Appl. Computing, pp. 133–140. ACM Press, New York (2005) · doi:10.1145/1066677.1066712
[14] Guerriero, M.L., Heath, J.K., Priami, C.: An automated translation from a narrative language for biological modelling into process algebra. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 136–151. Springer, Heidelberg (2007) · Zbl 05282351 · doi:10.1007/978-3-540-75140-3_10
[15] Harel, D.: Statecharts: A visual formalism for complex systems. Sci. Comput. Program. 8(3), 231–274 (1987) · Zbl 0637.68010 · doi:10.1016/0167-6423(87)90035-9
[16] Heiner, M., Gilbert, D., Donaldson, R.: Petri nets for systems and synthetic biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008) · Zbl 05286109 · doi:10.1007/978-3-540-68894-5_7
[17] Hucka, M., et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003) · doi:10.1093/bioinformatics/btg015
[18] Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use, vol. 1. Springer, Heidelberg (1992) · Zbl 0762.68004 · doi:10.1007/978-3-662-06289-0
[19] Kofahl, B., Klipp, E.: Modelling the dynamics of the yeast pheromone pathway. Yeast 21(10), 831–850 (2004) · doi:10.1002/yea.1122
[20] Kwiatkowski, M., Stark, I.: The continuous \(\pi\)-calculus: a process algebra for biochemical modelling. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 103–122. Springer, Heidelberg (2008) · Zbl 05351396 · doi:10.1007/978-3-540-88562-7_11
[21] Le Novère, N., et al.: The systems biology graphical notation. Nature Biotechnology 27, 735–741 (2009) · doi:10.1038/nbt.1558
[22] Mallavarapu, A., Thomson, M., Ullian, B., Gunawardena, J.: Programming with models: modularity and abstraction provide powerful capabilities for systems biology. J. R. Soc. Interface (2008)
[23] Murata, T.: Petri nets: properties, analysis and applications. Proceedings of the IEEE 77(4), 541–580 (1989) · doi:10.1109/5.24143
[24] Paun, G., Rozenberg, G.: A guide to membrane computing. Theor. Comput. Sci. 287(1), 73–100 (2002) · Zbl 1061.68054 · doi:10.1016/S0304-3975(02)00136-6
[25] Pedersen, M.: Compositional definitions of minimal flows in Petri nets. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 288–307. Springer, Heidelberg (2008) · Zbl 05351406 · doi:10.1007/978-3-540-88562-7_21
[26] Pedersen, M., Phillips, A.: Towards programming languages for genetic engineering of living cells. J. R. Soc. Interface special issue (2009)
[27] Pedersen, M., Plotkin, G.: A Language for Biochemical Systems. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 63–82. Springer, Heidelberg (2008) · Zbl 05351394 · doi:10.1007/978-3-540-88562-7_9
[28] Peyssonnaux, C., Eychène, A.: The Raf/MEK/ERK pathway: new concepts of activation. Biol. Cell. 93(1-2), 53–62 (2001) · doi:10.1016/S0248-4900(01)01125-X
[29] Phillips, A., Cardelli, L., Castagna, G.: A graphical representation for biological processes in the stochastic pi-calculus. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 123–152. Springer, Heidelberg (2006) · Zbl 05282621 · doi:10.1007/11905455_7
[30] Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002) · Zbl 0995.68018
[31] Plotkin, G.: A calculus of biochemical systems (in preparation)
[32] Priami, C.: Stochastic pi-calculus. The Computer Journal 38(7), 578–589 (1995) · Zbl 05478217 · doi:10.1093/comjnl/38.7.578
[33] Priami, C., Quaglia, P.: Beta binders for biological interactions. In: Danos, V., Schächter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer, Heidelberg (2005) · Zbl 1088.68646 · doi:10.1007/978-3-540-25974-9_3
[34] Regev, A., Paninab, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: an abstraction for biological compartments. Theor. Comput. Sci. 325(1), 141–167 (2004) · Zbl 1069.68569 · doi:10.1016/j.tcs.2004.03.061
[35] Smith, L.P., Bergmann, F.T., Chandran, D., Sauro, H.M.: Antimony: a modular model definition language. Bioinformatics 25(18), 2452–2454 (2009) · Zbl 05744224 · doi:10.1093/bioinformatics/btp401
[36] Wilkinson, D.J.: Stochastic Modelling for Systems Biology. Chapman & Hall/CRC, Boca Raton (2006) · Zbl 1099.92004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.