Low-discrepancy point sets. (English) Zbl 0584.10034

Various point sets in the s-dimensional unit cube with small discrepancy are constructed. One construction principle is based on the method of good lattice points. Another construction principle employs schemes for setting up the digit expansions (relative to a given base) of the coordinates of the points. These schemes use linear recurrence relations in finite fields or linear functionals from an extension field to a finite ground field. The bounds for the discrepancy are obtained by a new method of estimating the discrepancy in terms of exponential sums that was developed recently by the author [Sitzungsber., Abt. II, Österr. Akad. Wiss., Math.-Naturwiss. Kl. (to appear)].


11K38 Irregularities of distribution, discrepancy
11K06 General theory of distribution modulo \(1\)
Full Text: DOI EuDML


[1] Faure, H.: Discr?pance de suites associ?es ? un syst?me de num?ration (en dimensions). Acta Arith.41, 337-351 (1982). · Zbl 0442.10035
[2] Hlawka, E.: Funktionen von beschr?nkter Variation in der Theorie der Gleichverteilung. Ann. Mat. Pura Appl.54, 325-333 (1961). · Zbl 0103.27604 · doi:10.1007/BF02415361
[3] Hlawka, E.: Zur angen?herten Berechnung mehrfacher Integrale. Mh. Math.66, 140-151 (1962). · Zbl 0105.04603 · doi:10.1007/BF01387711
[4] Hlawka, E.: Uniform distribution modulo 1 and numerical analysis. compositio Math.16, 92-105 (1964). · Zbl 0146.27602
[5] Hua, L.K., Wang, Y.: Applications of Number Theory to Numerical analysis. Berlin-Heidelberg-New York: Springer. 1981. · Zbl 0465.10045
[6] Korobov, N.M.: The approximate computation of multiple integrals. Dokl. Akad. Nauk SSSR124, 1207-1210 (1959) (Russian) · Zbl 0089.04201
[7] Larcher, G.: On the distribution of sequences connected with good lattice points. Mh. Math.101, 135-150 (1986). · Zbl 0584.10030 · doi:10.1007/BF01298926
[8] Lidl, R., Niederreiter, H.: Finite fields. Reading: Addison-Wesley. 1983. · Zbl 0554.12010
[9] Niederreiter, H.: Pseudo-random numbers and optimal coefficients. Adv. in Math.26, 99-181 (1977). · Zbl 0366.65004 · doi:10.1016/0001-8708(77)90028-7
[10] Niederreiter, H.: Quasi-Monte Carlo methods and pseudo-random numbers. Bull. Amer. Math. Soc.84, 957-1041 (1978). · Zbl 0404.65003 · doi:10.1090/S0002-9904-1978-14532-7
[11] Niederreiter, H.: Multidimensional numerical integration using pseudorandom numbers. Proc. Numerical Methods for Stochastic Optimization (Laxenburg, 1983). Math. Programming Study27, 17-38. Amsterdam: North-Holland. (1986). · Zbl 0619.65012
[12] Niederreiter, H.: A statistical analysis of generalized feedback shift register pseudorandom number generators. SIAM J. Sci. Statist. Comp. (To appear.) · Zbl 0634.65003
[13] Niederreiter, H.: Pseudozufallszahlen und die Theorie der Gleichverteilung. Sitzungsber. ?sterr. akad. Wiss. Math.-Naturwiss. Kl. (To appear.)
[14] Sobol’, I.M.: Multidimensional Quadrature Formulas and Haar Functions. Moscow: Nauka. 1969. (Russian) · Zbl 0195.16903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.