Asymptotic analysis of the Navier-Stokes equations. (English) Zbl 0584.35007

A remarkable property of any two-dimensional solution of the viscous incompressible Navier-Stokes equations is that, for large times, their asymptotic behavior is totally determined by that of a finite number N of spatial Fourier modes. For both theoretical and practical purposes it is important to get close estimates of N.
In this paper the authors present new rigorous estimates from above of N. The best bound available is nearly proportional to a suitable generalized Grashof number (which depends on the driving force) and less than logarithmically dependent on the spatial structure or the shape of the force driving the flow. The estimates are derived for vanishing boundary data in a bounded domain as well as for space-periodic solutions in an unbounded domain. The first N modes usually determine solutions for large times in the mean square sense. In the last part of the paper conditions are discussed under which the above results hold in the pointwise sense.
Reviewer: F.Rosso


35B40 Asymptotic behavior of solutions to PDEs
35Q30 Navier-Stokes equations
49M15 Newton-type methods
35D05 Existence of generalized solutions of PDE (MSC2000)
Full Text: DOI


[1] Foias, C.; Prodi, G., Rend. sem. mat. univ. Padova, 39, 1, (1967)
[2] Foias, C.; Temam, R., Asymptotic numerical analysis for the Navier-Stokes equations (I), () · Zbl 0702.35203
[3] Landau, L.; Lifshitz, I.M., Fluid dynamics, (1953), Addison-Wesley New York
[4] Ruelle, D.; Takens, F., Comm. math. phys., 20, 167, (1971) · Zbl 0227.76084
[5] Lorenz, E.N., J. atm. sci., 20, 130, (1963)
[6] ()
[7] Franceschini, V.; Tebaldi, C., J. stat. phys., 25, 397, (1981)
[8] Manley, O.P.; Trève, Y.M., Phys. lett., 83A, 88, (1981)
[9] Foias, C.; Temam, R., J. math. pures appl., 58, 339, (1979)
[10] Temam, R., Navier-Stokes equations, theory and numerical analysis, (1979), North-Holland Amsterdam · Zbl 0426.35003
[11] Lions, J.L.; Magenes, E., Nonhomogeneous boundary value problems and applications, (1972), Springer Berlin, New York · Zbl 0223.35039
[12] Nečas, J., LES Méthodes directes en théorie des équations elliptiques, (1967), Masson Paris · Zbl 1225.35003
[13] Temam, R., (), series in Applied Mathematics
[14] Lions, J.L., Quelques Méthodes de Résolution des problèmes aux limites non linéaires, (1969), Dunod Paris · Zbl 0189.40603
[15] Vorovich, I.I.; Yudovich, V.I., Mat. sbornik, 53, 393, (1961)
[16] Ladyzhenskaya, O.A., The mathematical theory of viscous incompressible flow, (1969), Gordon and Breach New York, translated from the Russian by R.A. Silverman and J. Chu · Zbl 0184.52603
[17] Cattabriga, L., Rend. sem. mat. univ. Padova, 31, 308, (1961)
[18] Agmon, S.; Douglis, A.; Nirenberg, L., Comm. pure appl. math., 17, 35, (1964)
[19] Solonnikov, V.A., Dokl. akad. SSRS, 130, 988, (1960)
[20] Adams, R.A., Sobolev spaces, (1975), Academic Press New York · Zbl 0186.19101
[21] Lions, J.L., Problèmes aux limites dans LES équations aux Dérivées partielles, (1962), Presses de l’Université de Montréal Montréal · Zbl 0107.30702
[22] Agmon, S., Lectures on elliptic boundary value problems, (1965), Elsevier New York · Zbl 0151.20203
[23] Brézis, H.; Gallouet, T., Nonlinear schroedinger evolution equations, nonlinear analysis theory, methods and applications, 4, 677, (1980) · Zbl 0451.35023
[24] Maschke, E.M.; Saramito, B., Phys. lett., 88A, 156, (1982)
[25] Saramito, B., Sur le comportement asymptotique de certaines solutions du problème bidimensionnel de la convection de Bénard, Cea-euratom, (1981)
[26] Métivier, G., J. math. pures appl., 57, 365, (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.