zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the convergence of fuzzy sets. (English) Zbl 0584.54004
Three kinds of convergences of fuzzy sets are defined by using the Hausdorff metric for supported endographs (Kloeden e.a.) ore by using the Hausdorff distances of the $\alpha$-level sets (Heilpern, the author e.a.). For fuzzy subsets of $R\sp n$ the author studies the relationships of this convergences and the fixed point property.
Reviewer: B.Behrens

MSC:
54A40Fuzzy topology
54A20Convergence in general topology
54H25Fixed-point and coincidence theorems in topological spaces
WorldCat.org
Full Text: DOI
References:
[1] Castaing, C.; Valadier, M.: Convex analysis and measurable multifunctions. (1977) · Zbl 0346.46038
[2] Goetschel, R.; Voxman, W.: A pseudometric for fuzzy sets and certain related results. J. math. Anal. appl. 81, 507-523 (1981) · Zbl 0505.54008
[3] Goetschel, R.; Voxman, W.: Topological properties of fuzzy numbers. Fuzzy sets and systems 10, 87-99 (1983) · Zbl 0521.54001
[4] Hausdorff, F.: Set theory. (1957) · Zbl 0081.04601
[5] Heilpern, S.: Fuzzy mappings and fixed point theorem. J. math. Anal. appl. 83, 566-569 (1981) · Zbl 0486.54006
[6] Kaleva, O.; Seikkala, S.: On fuzzy metric spaces. Fuzzy sets and systems 12, 215-229 (1984) · Zbl 0558.54003
[7] Kloeden, P. E.: Compact supported endographs and fuzzy sets. Fuzzy sets and systems 4, 193-201 (1980) · Zbl 0441.54008
[8] Nguyen, H. T.: A note on the extension principle for fuzzy sets. J. math. Anal. appl. 64, 369-380 (1978) · Zbl 0377.04004
[9] Puri, M. L.; Ralescu, D. A.: Differentials of fuzzy functions. J. math. Anal. appl. 91, 552-558 (1983) · Zbl 0528.54009
[10] Royden, H. L.: Real analysis. (1968) · Zbl 0197.03501
[11] Rådström, H.: An embedding theorem for spaces of convex sets. Proc. amer. Math. soc. 3, 165-169 (1952) · Zbl 0046.33304
[12] Taylor, A. E.: Introduction to functional analysis. (1964)
[13] Zadeh, L. A.: The concept of a linguistic variable and its application to approximate reasoning. I. inform. Sci. 8, 199-249 (1975) · Zbl 0397.68071