×

zbMATH — the first resource for mathematics

Excessive measures and Markov processes with random birth and death. (English) Zbl 0584.60085
Summary: Given an excessive measure \(\eta\) for a right Markov semigroup \((P_ t)\), one can construct a stationary strong Markov process with \(\eta\) as one-dimensional distribution and with \((P_ t)\) as transition semigroup. This process has random birth and death times and the underlying measure space may have infinite mass. The process, whose construction follows easily from a theorem of Kuznetsov, leads to new interpretations of various Riesz type decompositions of the measure \(\eta\) and of the Hunt balayage of \(\eta\) on a set. In addition, it allows one to consider the nontransient case and to provide a last exit type decomposition of \(\eta\).

MSC:
60J45 Probabilistic potential theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Atkinson, B.W., Mitro, J.B.: Applications of Revuz and Palm type measures for additive functionals in weak duality. Seminar on Stochastic Processes 1982. Boston: Birkhäuser 1983 · Zbl 0528.60074
[2] Boutabia, H.: Thèse de troisième cycle (en cours de rédaction)
[3] Dynkin, E.B.: Minimal excessive measures and functions. Trans. Am. Math. Soc. 258, 217-244 (1980) · Zbl 0422.60057 · doi:10.1090/S0002-9947-1980-0554330-5
[4] Fitzsimmons, P.J.: Notes on the simple ordering of excessive measures (Unpublished manuscript)
[5] Getoor, R.K.: Markov Processes: Ray Processes and Right Processes. Springer Lecture Notes 440. Berlin-Heidelberg-New York: Springer 1975 · Zbl 0299.60051
[6] Getoor, R.K.: Excursions of a Markov process. Ann. Probab. 7, 244-266 (1979) · Zbl 0399.60069 · doi:10.1214/aop/1176995086
[7] Getoor, R.K.: Transience and recurrence of Markov processes. Sém. de Prob. XIV, Lecture Notes in Math. 784. Berlin-Heidelberg-New York: Springer 1980
[8] Getoor, R.K., Glover, J.: Markov processes with identical excessive measures. Math. Z. 184, 287-300 (1983) · Zbl 0517.60081 · doi:10.1007/BF01163505
[9] Getoor, R.K., Glover, J.: Riesz decompositions in Markov process theory. Trans. Am. Math. Soc. 285, 107-132 (1984) · Zbl 0547.60076 · doi:10.1090/S0002-9947-1984-0748833-1
[10] Getoor, R.K., Sharpe, M.J.: Naturality, standardness, and weak duality for markov processes. Z. Wahscheinlichkeitstheor. Verw. Geb. 67, 1-62 (1984) · Zbl 0553.60070 · doi:10.1007/BF00534082
[11] Kaspi, H.: Excursions of Markov processes via Markov additive processes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 64, 251-268 (1983) · Zbl 0514.60073 · doi:10.1007/BF01844609
[12] Kaspi, H.: On invariant measures and dual excursions of Markov processes. Ann. Probab. 13, 492-518 (1985) · Zbl 0566.60075 · doi:10.1214/aop/1176993005
[13] Kuznetsov, S.E.: Construction of markov processes with random times of birth and death. Theor. Probab. Appl. 18, 571-574 (1974) · Zbl 0296.60049 · doi:10.1137/1118071
[14] Maisonneuve, B.: Exit Systems, Ann. Probab. 3, 399-411 (1975) · Zbl 0311.60047 · doi:10.1214/aop/1176996348
[15] Mitro, J.B.: Dual Markov processes: construction of a useful auxiliary process. Z. Wahrschein-lichkeitstheor. Verw. Geb. 47, 139-156 (1979) · Zbl 0406.60067 · doi:10.1007/BF00535279
[16] Neveu, J.: Bases mathématiques du calcul des probabilités. Paris: Masson, 1964 · Zbl 0137.11203
[17] Sharpe, M.J.: General Theory of Markov Processes (Forthcoming book)
[18] Silverstein, M.L.: Continuous time ladder variables. Ann. Probab. 8, 539-575 (1980) · Zbl 0459.60063 · doi:10.1214/aop/1176994726
[19] Weil, M.: Quasi-processus et énergie, Sém. de Prob. V, Lecture Notes in Math., 191, 347-361 Berlin-Heidelberg-New York: Springer 1971
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.