Collins, John R.; Wiens, Douglas P. Minimax variance M-estimators in \(\epsilon\)-contamination models. (English) Zbl 0584.62049 Ann. Stat. 13, 1078-1096 (1985). The problem of estimation of a location parameter is considered, when the \(\epsilon\)-contamination model \(f(x)=(1-\epsilon)h(x)+\epsilon g(x)\) is used. The authors investigate the form of the minimax variance solutions. Differently from the well-known result of P. J. Huber [Ann. math. Stat. 35, 73-101 (1964; Zbl 0136.398)], the known density h is not necessarily strongly unimodal, and definite results are obtained under mild regularity conditions on h. Minimax variance problems for multivariate location and scale parameters are also studied. Reviewer: O.Yanushkevichiene Cited in 7 Documents MSC: 62F35 Robustness and adaptive procedures (parametric inference) 62F12 Asymptotic properties of parametric estimators 62H12 Estimation in multivariate analysis Keywords:robust estimation; M-estimators; epsilon contamination; minimax variance solutions Citations:Zbl 0136.398 PDF BibTeX XML Cite \textit{J. R. Collins} and \textit{D. P. Wiens}, Ann. Stat. 13, 1078--1096 (1985; Zbl 0584.62049) Full Text: DOI OpenURL