×

zbMATH — the first resource for mathematics

Optimisation impossible. (French) Zbl 0584.65036
It is shown that for certain families of functions no optimization procedure can exist. The author uses only the fact that all optimization algorithms generate a sequence of approximate optimizers requiring the evaluation of the objective function or of its derivatives on a finite number of points. The results presented here are rather elementary and may be considered as mathematical proofs of well-known principles of optimization theory.
Reviewer: C.A.Botsaris
MSC:
65K05 Numerical mathematical programming methods
90C30 Nonlinear programming
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] O. ABERTH, Analysis in computable number field. J.A.C.M., vol. 15, n^\circ 2, April 1968. Zbl0159.01201 MR237337 · Zbl 0159.01201 · doi:10.1145/321450.321460
[2] M. BOUHIER, Quelques questions d’analyse numérique traitées du point de vue de la calculabilité. Thèse de 3e Cycle, Université Scientifique et Médicale de Grenoble, 1974.
[3] J.-P. DELAHAYE, Théorie des transformations de suites en analyse numérique. Applications. Thèse d’État, Université de Lille, 1982.
[4] [4] J.-P. DELAHAYE, Optimalité du procédé D e l t a 2 d’Aitken pour l’accélération de la convergence linéaire. R.A.I.R.O., Analyse Numérique, 15, 1981, pp. 321-330. Zbl0468.65002 MR642496 · Zbl 0468.65002 · eudml:193385
[5] J.-P. DELAHAYE, Sur quelques limitations des algorithmes dans le traitement des suites. Pub. A.N.O., n^\circ 116. Université de Lille, juin 1983. · Zbl 0582.65001
[6] [6] J.-P. DELAHAYE et B. GERMAIN-BONNE, Résultats négatifs en accélération de la convergence. Num. Math. 35, 1980, pp. 443-457. Zbl0423.65003 MR593838 · Zbl 0423.65003 · doi:10.1007/BF01399010 · eudml:186301
[7] J.-P. DELAHAYE et B. GERMAIN-BONNE, The set of logarithmically convergent sequences cannot be accelerated. S.I.A.M., J. Num. Anal., 1982, pp. 840-844. Zbl0495.65001 MR664889 · Zbl 0495.65001 · doi:10.1137/0719059
[8] J. DENEL, Contribution à la synthèse des algorithmes d’optimisation. Thèse d’État, Université de Lille, 1979.
[9] N. GASTINEL, Introduction à l’analyse calculable. Polycopié d’un cours de D.E.A., 1972. Université Scientifique et Médicale de Grenoble.
[10] P. HUARD, Point-to-set maps and mathematical programming. Mathematical Programming Study, n^\circ 10, 1979 (Avec A. Auslender, J. M. Borwein, J.-P. Delahaye, J. Denel, J. Ch. Fiorot, E. G. Gol’Shtein, P. Huard, D. Klatte, R. Klessig, B. Kummer, G. G. L. Meyer, E. Polak, S. M. Robinson, A. Ruszczynski, R. Saigal, J. Szymanowski, S. Tishydhigama, N. V. Tret’Yakow).
[11] E. POLACK, Computation methods in optimization. Academic Press, NewYork, 1971.
[12] J. F. TRAUB and H. WOZNIAKOWSKI, A general theory of optimal algorithms. Academic Press, New York, 1980. Zbl0441.68046 MR584446 · Zbl 0441.68046
[13] W. I. ZANGWILL, Nonlinear programming a unified approach. Prentice Hall, inc. Englewood Cliffs, N.J., 1969. Zbl0195.20804 MR302199 · Zbl 0195.20804
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.