×

Internal finite element approximation in the dual variational method for the biharmonic problem. (English) Zbl 0584.65068

The paper presents a conforming finite element method for the dual variational formulation of the biharmonic problem with mixed boundary conditions. This allows \(C^ 0\)-elements to be used when the primal problem requires \(C^ 1\)-elements. The solution yields the second derivatives of the solution. The method depends on the existence of a vector potential for the equilibrium bending moment.
Reviewer: J.D.P.Donnelly

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65E05 General theory of numerical methods in complex analysis (potential theory, etc.)
31A30 Biharmonic, polyharmonic functions and equations, Poisson’s equation in two dimensions
35J40 Boundary value problems for higher-order elliptic equations
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] F. Brezzi: Non-standard finite elements for fourth order elliptic problems. Energy Methods in Finite Element Analysis. John Wiley&Sons Ltd., Chichester, New York, Brisbane, Toronto, 1979, 193-211.
[2] F. Brezzi P. A. Raviart: Mixed finite element methods for 4th order elliptic equations. Topics in Numerical Analysis, vol. III, Academic Press, London, 1976, 33 - 36. · Zbl 0434.65085
[3] P. G. Ciarlet: The finite element method for elliptic problems. North-Holland, Amsterdam, New York, Oxford, 1978. · Zbl 0383.65058
[4] P. G. Ciarlet R. Glowinski: Dual iterative techniques for solving a finite element approximation of the biharmonic equation. Comput. Methods Appl. Mech. Engrg. 5 (1975), 277-295. · Zbl 0305.65068
[5] P. Doktor: On the density of smooth functions in certain subspaces of Sobolev spaces. Comment. Math. Univ. Carolin. 14, 4 (1973), 609-622. · Zbl 0268.46036
[6] B. Fraeijs de Veubeke: Finite element method in aerospace engineering problems. Computing Methods in Applied Sciences and Engineering. Part 1, Springer- Verlag, Berlin, Heidelberg, New York, 1974, 224-258. · Zbl 0283.73029
[7] B. Fraeijs de Veubeke G. Sander: An equilibrium model for plate bending. Int. J. Solids and Structures 4 (1968), 447-468.
[8] I. Hlaváček: Convergence of an equilibrium finite element model for plane elastostatics. Apl. Mat. 24 (1979), 427-457.
[9] I. Hlaváček M. Křížek: Internal finite element approximations in the dual variational method for second order elliptic problems with curved boundaries. Apl. Mat. 29 (1984), 52-69. · Zbl 0543.65074
[10] J. Hřebíček: Numerical analysis of the general biharmonic problem by the finite element method. Apl. Mat. 27 (1982), 352-374. · Zbl 0541.65072
[11] M. Křížek: Conforming equilibrium finite element methods for some elliptic plane problems. RAIRO Anal. Numer. 17 (1983), 35-65. · Zbl 0541.76003
[12] L. A. Ljusternik V. I. Sobolev: A short course of functional analysis. (Russian). Izd. Vysšaja škola, Moscow, 1982.
[13] L. Mansfield: A Clough-Tocher type element useful for fourth order problems over nonpolygonal domains. Math. Comp. 32 (1978), 135-142. · Zbl 0382.65060
[14] S. G. Michlin: Variational methods in mathematical physics. (Russian). Izd. Nauka, Moscow, 1970.
[15] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967. · Zbl 1225.35003
[16] J. Nečas I. Hlaváček: Mathematical theory of elastic and elasto-plastic bodies: an introduction. Elsevier, Amsterdam, Oxford, New York, 1981.
[17] K. Rektorys: Survey of applicable mathematics. Iliffe Books Ltd., London, SNTL, Prague, 1969. · Zbl 0175.15802
[18] K. Rektorys: Variational methods in mathematics, science and engineering. D. Reidel Publishing Co., Dordrecht-Boston, Mass., 1977. · Zbl 0668.49001
[19] G. Sander: Application of the dual analysis principle. Proc. of the IUTAM Sympos. on High Speed Computing of Elastic Structures, Congrès et Colloques de l’Université de Liège, 1971, 167-207.
[20] M. Zlámal: Curved elements in the finite element method. SIAM J. Numer. Anal. 10 (3973), 229-240. · Zbl 0285.65067
[21] A. Ženíšek: Curved triangular finite \(C^m\)-elements. Apl. Mat. 23 (1978), 346-377. · Zbl 0404.35041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.