Cœuré, Gérard; Loeb, Jean-Jacques A counterexample to the Serre problem with a bounded domain of \({\mathbb{C}}^ 2\) as fiber. (English) Zbl 0585.32030 Ann. Math. (2) 122, 329-334 (1985). The authors give an example of a holomorphic fibre bundle with base \({\mathbb{C}}^*\) and fibre a bounded Stein domain in \({\mathbb{C}}^ 2\), whose total space is not Stein, thus answering in the negative a conjecture of Y. T. Siu [Bull. Am. Math. Soc. 84, 481-512 (1978; Zbl 0423.32008)]. The bundle is described explicitly as the quotient of a domain in \({\mathbb{C}}^ 3\) by the action of a discrete group of automorphisms. Reviewer: P.Newstead Cited in 4 ReviewsCited in 13 Documents MSC: 32L05 Holomorphic bundles and generalizations 32E10 Stein spaces 32M05 Complex Lie groups, group actions on complex spaces 32A07 Special domains in \({\mathbb C}^n\) (Reinhardt, Hartogs, circular, tube) (MSC2010) 32U05 Plurisubharmonic functions and generalizations Keywords:Reinhardt domain; plurisubharmonic function; Serre problem; holomorphic fibre bundle; bounded Stein domain Citations:Zbl 0423.32008 PDF BibTeX XML Cite \textit{G. Cœuré} and \textit{J.-J. Loeb}, Ann. Math. (2) 122, 329--334 (1985; Zbl 0585.32030) Full Text: DOI OpenURL