×

General relativistic celestial mechanics of binary systems. I: The post- Newtonian motion. (English) Zbl 0585.70010

Summary: We present a new method for solving explicitly the equations of motion of a binary system at the first post-Newtonian approximation of general relativity. We show how to express the solution in a simple, quasi- Newtonian form. The results are compared and contrasted with other results existing in the literature.

MSC:

70F15 Celestial mechanics
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] B.M. Barker and R.F. O’Connell , Phys. Rev. D. , t. 12 , 1975 , p. 329 .
[2] B.M. Barker and R.F. O’Connell , Phys. Rev. D. , t. 29 , 1984 , p. 2721 .
[3] L. Bel , T. Damour , N. Deruelle , J. Ibañez , J. Martin , Gen. Rel. Grav. , t. 13 , 1981 , p. 963 . MR 642605
[4] R. Blandford , S. Teukolsky , Astrophys. J. , t. 205 , 1976 , p. 580 .
[5] R.A. Breuer , E. Rudolph , Gen. Rel. Grav. , t. 14 , 1982 , p. 181 . MR 649694 | Zbl 0483.70011 · Zbl 0483.70011
[6] V. Brumberg , Relativistic celestial mechanics , Nauka , Moscow (in Russian), 1972 . MR 421600 · Zbl 0743.70001
[7] A. Caporali , Nuov. Cim. , t. 61B , 1981 , p. 181 , 205 and 213 .
[8] T. Damour , in Gravitational radiation , N. Deruelle and T. Piran eds, North-Holland , Amsterdam , 1983 , p. 59 .
[9] T. Damour , Phys. Rev. Lett. , t. 51 , 1983 , p. 1019 .
[10] T. Damour , in Proceedings of Journées Relativistes 1983 , S. Benenti et al. eds, Pitagora Editrice , Bologna , 1985 , p. 89 .
[11] T. Damour , N. Deruelle , Phys. Lett. , t. 87A , 1981 a, p. 81 .
[12] T. Damour , N. Deruelle , C. R. Acad. Sc. Paris , t. 293 , série II, 1981 b, p. 877 . MR 654230
[13] T. Damour , N. Deruelle , ( to be submitted for publication ), 1985 .
[14] T. Damour , G. Schäfer , Gen. Rel. Grav. , in print, 1985 .
[15] P.D. D’Eath , Phys. Rev. , t. D 12 , 1975 , p. 2183 .
[16] W.G. Dixon , in Isolated gravitating systems in general relativity , J. Ehlers ed., North-Holland , Amsterdam , 1979 , p. 156 . MR 641404
[17] D.M. Eardley , Astrophys. J. , t. 196 , 1975 , p. L 59 .
[18] J. Ehlers , Ann. N. Y. Acad. Sci. , t. 336 , 1980 , p. 279 .
[19] R. Epstein , Astrophys. J. , t. 216 , 1977 , p. 92 , see also the errata in t. 231 , p. 644 .
[20] P. Esnault , D. Holleaux , Contribution à l’étude du mouvement d’un système double relativiste (unpublished), 1982 .
[21] Y. Hagihara , Celestial Mechanics , the MIT Press , 1970 . MR 478835 | Zbl 0242.70003 · Zbl 0242.70003
[22] L. Infeld , J. Plebanski , Motion and Relativity , Pergamon , Oxford , 1960 . MR 127935 | Zbl 0112.44002 · Zbl 0112.44002
[23] R.E. Kates , Phys. Rev. , t. 22 , 1980 , p. 1871 . MR 590393
[24] L.D. Landau , E.M. Lifshitz , Mécanique , Mir , Moscou , 1969 .
[25] L.D. Landau , E.M. Lifshitz , The classical theory of fields , Addison-Wesley , Reading, Mass, 1971 . Zbl 0043.19803 · Zbl 0043.19803
[26] H.A. Lorentz , J. Droste , Versl. K. Akad. Wet. Amsterdam , t. 26 , 1917 , p. 392 and 649, reprinted in the Collected Papers of H. A. Lorentz , t. 5 , 1937 , p. 330 . The Hague, Nijhoff. · JFM 46.1333.01
[27] M. Portilla , R. Lapiedra , in Actas de los E. R. E. 1983 , L. Mas. ed., I. C. E.-Departament de Fisica Teorica, Palma de Mallorca , 1984 , p. 267 .
[28] H.P. Robertson , Ann. Math. , t. 39 , 1938 , p. 101 . Zbl 0018.28201 | JFM 64.0769.02 · Zbl 0018.28201
[29] G. Schäfer , Phys. Lett. , t. 100A , 1984 , p. 128 .
[30] N. Spyrou , Gen. Rel. Grav. , t. 9 , 1978 , p. 519 . Zbl 0431.70019 · Zbl 0431.70019
[31] N. Spyrou , Gen. Rel. Grav. , t. 13 , 1981 , p. 473 (see also t. 15 , 1983 , p. 363 ). Zbl 0498.70022 · Zbl 0498.70022
[32] J.H. Taylor , J.M. Weisberg , Astrophys. J. , t. 253 , 1982 , p. 908 .
[33] R.V. Wagoner , C.M. Will , Astrophys. J. , t. 210 , 1976 , p. 764 .
[34] C.M. Will , Theory and experiment in gravitational physics , Cambridge University Press , Cambridge , 1981 . MR 778909
[35] C.M. Will , D.M. Eardley , Astrophys. J. , t. 212 , 1977 , p. L 91 .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.