zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multiple stable equilibria in a predator-prey system. (English) Zbl 0585.92023
Summary: Necessary and sufficient conditions are given for three equilibria to occur in a predator-prey model and conditions are given for two of these to be stable. The existence of two stable equilibria requires predator intraspecific competition for either space or food, and the lower the prey growth rate the stronger this predator self-regulation must be. A prey growth rate that is skewed to the right, the ability of a few predators to survive at low prey densities, and predators with high searching effectiveness, long handling times, and large maximum per capita rate of increase all make two stable equilibria more likely.

92D25Population dynamics (general)
34C99Qualitative theory of solutions of ODE
Full Text: DOI
[1] Barclay, H. J. and M. Mackauer. 1980. ”The Sterile Insect Release Method for Pest Control: A Density Dependent Model.”Envir. Ent. 9, 810--817.
[2] Beddington, J. R. 1975. ”Mutual Interference Between Parasites or Predators and its Effect on Searching Efficiency.”J. Anim. Ecol. 44, 331--340. · doi:10.2307/3866
[3] Connell, J. H. and W. P. Sousa. 1983. ”On the Evidence Needed to Judge Ecological Stability or Persistence.”Am. Nat. 121, 789--824. · doi:10.1086/284105
[4] Fekete, S. B. 1983. ”Stability and Persistence of a System of Predator-Prey Equations.” M.S. thesis, University of Georgia.
[5] Freedman, H. I. 1979. ”Stability Analysis of a Predator-Prey System with Mutual Interference and Density-dependent Death Rates.”Bull. math. Biol. 41, 67--78. · Zbl 0387.92016 · doi:10.1007/BF02547925
[6] Hassell, M. P. 1971. ”Mutual Interference Between Searching Insect Parasites.”J. Anim. Ecol. 40, 473--486. · doi:10.2307/3256
[7] Holling, C. S. 1959. ”The Components of Predation as Revealed by a Study of Small-mammal Predation on the European Pine Sawfly.”Can. Ent. 91, 293--320. · doi:10.4039/Ent91293-5
[8] -- 1965. ”The Functional Response of Predators to Prey Density and its Role in Mimicry and Population Regulation.”Mem. ent. Soc. Can. 45, 1--60. · doi:10.4039/entm9745fv
[9] Jones, D. D. and C. J. Walters. 1976. ”Catastrophe Theory and Fisheries Regulation.”J. Fish. Res. Bd Can. 33, 2829--2833. · doi:10.1139/f76-338
[10] May, R. M. 1977. ”Thresholds and Breakpoints in Ecosystems with a Multiplicity of Stable States.”Nature 269, 471--477. · doi:10.1038/269471a0
[11] Murdoch, W. W. and A. Oaten. 1975. ”Predation and Population Stability.”Adv. Ecol. Res. 9, 1--131. · doi:10.1016/S0065-2504(08)60288-3
[12] Noy-Meir, I. 1975. ”Stability of Grazing Systems: An Application of Predator-Prey Graphs.”J. Ecol. 63, 459--481. · doi:10.2307/2258730
[13] Peterman, R. 1977. ”A Simple Mechanism that Causes Collapsing Stability Regions in Exploited Salmonid Populations.”J. Fish. Res. Bd Can. 34, 1130--1142. · doi:10.1139/f77-170
[14] Rosenzweig, M. L. and R. H. MacArthur. 1963. ”Graphical Representation and Stability Conditions of Predator-Prey Interactions.”Am. Nat. 47, 209--223. · doi:10.1086/282272
[15] Soloman, M. E. 1949. ”The Natural Control of Animal Populations.”J. Anim. Ecol. 18, 1--35. · doi:10.2307/1578
[16] Takahashi, F. 1964. ”Reproduction Curve with Two Equilibrium Points: A Consideration of the Fluctuation of Insect Population.”Researches Popul. Ecol. Kyoto Univ. 6, 28--36. · doi:10.1007/BF02524942
[17] Tanner, J. T. 1975. ”The Stability and the Intrinsic Growth Rates of Prey and Predator Populations.”Ecology 56, 855--867. · doi:10.2307/1936296
[18] Watt, K. E. F. 1968.Ecology and Resource Management. New York: McGraw-Hill. · Zbl 0162.46601
[19] Wiegert, R. G. 1974. ”Mathematical Representations of Ecological Interactions.” InEcosystem Analysis and Predation, S. Levin (Ed.), pp. 43--54. Philadelphia: SIAM.
[20] -- and R. L. Wetzel. 1979. ”Simulation Experiments With a Fourteen Compartment Model ofSpartina Marsh.” InMarsh Estuarine Systems Simulation, R. Dame (Ed.), pp. 7--39. Columbia, SC: University of South Carolina Press.