Heegner divisors, \(L\)-functions and harmonic weak Maass forms. (English) Zbl 1244.11046

The subject of harmonic weak Maass forms has enjoyed an increasing amount of popularity in recent years. This is partly due to the relationship with mock theta functions and the possibility to interpret these as combinatorial generating functions (cf. e.g. K. Ono [“Unearthing the visions of a master: harmonic Maass forms and number theory”, in: Jerison, David (ed.) et al. Current developments in mathematics, 2008. Somerville, MA: International Press, 347–454 (2009; Zbl 1229.11074)]). It is also known that harmonic weak Maass forms (in the guise of half-integral weight Eisenstein series) can serve as generating functions for class numbers (cf. e.g. F. Hirzebruch and D. Zagier [Invent. Math. 36, 57–113 (1976; Zbl 0332.14009)]).
The theory of harmonic weak Maass forms was first developed (in a systematic way) by J. Bruinier and J. Funke [Duke Math. J. 125, No. 1, 45–90 (2004; Zbl 1088.11030)]. The paper under review is an important step towards a better understanding of this class of functions and its role in the world of automorphic forms and arithmetic geometry.
One of the main results in the current paper is a generalization of the classical result of Waldspurger, Kohnen and Zagier which says that critical values of quadratic twists of a given modular \(L\)-function are determined by the Fourier coefficients of an associated half-integral weight modular form.
It is shown that the derivatives at the critical point of quadratic twists of weight \(2\) modular \(L\)-functions are related to Fourier coefficients of associated half-integral weight harmonic weak Maass forms. The main part of the paper is formulated in the more general setting of vector-valued modular forms for the Weil representation. However, for the sake of clarity, and to avoid the introduction of unnecessary notation, we will state the main results in the simpler setting of scalar-valued modular forms of prime level. I will begin by reviewing some of the classical results. For proofs see e.g. W. Kohnen [Math. Ann. 271, 237–268 (1985; Zbl 0542.10018)].
Let \(G\) be a newform of weight \(2\) and prime level \(p\), that is \(G\in S_{2}^{\mathrm{new}}(\Gamma_{0}\left(p\right))\). From Kohnen’s theory of plus spaces we know that there exists a weight \(\frac{3}{2}\) modular form, \(g\in S_{\frac{3}{2}}^{+}(\Gamma_{0}\left(4p\right))\), which lifts to \(G\) under the Shimura correspondence. Suppose that \(G\) and \(g\) have Fourier coefficients \(b_{G}\left(n\right)\) and \(b_{g}\left(n\right)\). That is to say, that \(G\left(\tau\right)=\sum_{n\geq1}b_{G}\left(n\right)q^{n}\) and \(g\left(\tau\right)=\sum_{n\geq1,n\equiv0,3\left(4\right)}b_{g}\left(n\right)q^{n}\) where \(q=e^{2\pi i\tau}\) for \(\tau\in\mathbb{H}=\left\{ \tau=u+iv\,|\, v>0\right\} \). It is known that the Shimura correspondence commutes with the action of Hecke operators, with the operator \(T_{n}\) acting on \(S_{2}^{\mathrm{new}}\left(p\right)\) corresponding to \(T_{n^{2}}\) acting on \(S_{\frac{3}{2}}^{+}\left(4p\right)\). It is therefore natural to expect that the coefficients \(b_{g}\left(n^{2}\right)\) should be determined by the coefficients of \(G\). Indeed, if \(D<0\) is a fundamental discriminant then \[ b_{g}\left(n^{2}\left|D\right|\right)=b_{g}\left(\left|D\right|\right)\sum_{d|n,\left(d,p\right)=1}\mu\left(d\right)\left(\frac{D}{d}\right)b_{G}\left(\frac{n}{d}\right) \] where \(\mu\) is the Möbius function and \(\left(\frac{D}{\cdot}\right)\) denotes the usual Kronecker symbol. The relationship between the square-free coefficients of \(g\) and the function \(G\) is deeper and much more indirect. Suppose that the \(L\)-function of \(G\), \[ L\left(G,s\right)=\sum b_{G}\left(n\right)n^{-s} \] has a functional equation with sign \(\varepsilon\left(G\right)\), meaning that the completed \(L\)-function \[ \Lambda\left(G,s\right)=(2\pi)^{-s}p^{s/2}\Gamma\left(s\right)L\left(g,s\right) \] satisfies \[ \Lambda\left(G,2-s\right)=\varepsilon\left(G\right)\Lambda\left(G,s\right). \] For a fundamental discriminant \(D\), consider the Dirichlet character \(\chi_{D}=\left(\frac{D}{\cdot}\right)\) and the twisted L-series \[ L\left(G,\chi_{D},s\right)=\sum_{n=1}^{\infty}b_{G}\left(n\right)\chi_{D}\left(n\right)n^{-s}. \] It has a functional equation with sign given by \(\varepsilon\left(G;D\right)=\varepsilon(G)\chi_{D}(p) \text{sgn} (D)\). If \(\varepsilon\left(G;D\right)=1\) then the critical value is given by \[ L\left(G,\chi_{D},1\right)=c\cdot\left|b_{g}\left(|D|\right)\right|^{2} \] where \(c\) is an explicit constant. If \(\varepsilon\left(D\right)=-1\) then it is clear that the critical value vanishes and we are naturally led to study the derivative at the critical point \(L'(G,\chi_{D},1)\).
In order to study this derivative it turns out to be necessary to introduce the space of harmonic weak Maass forms of level \(4p\) and weight \(\frac{1}{2}\). This space, denoted by \(H_{\frac{1}{2}}(4p)\), consists of real analytic functions on the upper half-plane, \(f:\mathbb{H}\rightarrow\mathbb{C}\), satisfying the following conditions:
(a) \(f\left(A\tau\right)=v_{\theta}\left(A\right)\left(c\tau+d\right)^{\frac{1}{2}}f\left(\tau\right)\), for all \(A=\left(\begin{smallmatrix} a & b\\ c & d \end{smallmatrix} \right)\in\Gamma_{0}\left(p\right),\)
(b) \(\Delta_{k}f\left(\tau\right)=0,\) where \(\Delta_{k}=v^{2}\left(\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}}\right)-ikv\left(\frac{\partial}{\partial u}+i\frac{\partial}{\partial v}\right)\), and
(c) there exist a polynomial \(P_{f}\in\mathbb{C}\left[q^{-1}\right]\) and \(\epsilon>0\) such that \(f\left(\tau\right)-P_{f}\left(q\right)=O\left(e^{-\varepsilon v}\right)\) as \(v\rightarrow\infty\) (and similar conditions at the other cusps).
Here \(v_{\theta}\left(A\right)=\varepsilon_{d}^{-1}\left(\frac{c}{d}\right)\) is the theta multiplier and \(\varepsilon_{d}=1\) if \(d\equiv1\mod4\) and \(\varepsilon_{d}=i\) otherwise. It can be shown that the differential operator \(\xi_{\frac{1}{2}}\), defined by \(\xi_{\frac{1}{2}}\left(f\right)\left(\tau\right)=2iv^{\frac{1}{2}}\overline{\frac{\partial f}{\partial\overline{\tau}}}\), maps \(H_{\frac{1}{2}}\left(4p\right)\) onto \(S_{\frac{3}{2}}^{+}\left(4p\right)\). We choose an \(f_{g}\in H_{\frac{1}{2}}\left(4p\right)\) such that \(\xi_{\frac{1}{2}}\left(f\right)=\left\| g\right\| ^{-2}g\), where \(\left\| g\right\| \) is the Petersson norm of \(g\). We know that \(f_{g}\) has a Fourier expansion at infinity of the form \[ f_{g}\left(\tau\right)=P_{f}\left(q\right)+\sum_{n>0}c_{g}^{+}\left(n\right)q^{n}+\sum_{n<0}c_{g}^{-}\left(n\right)\Gamma\left(k-1;4\pi\left|n\right|v\right)q^{n}. \]
Using the notation and definitions introduced above we can now formulate the simplest version of the main result of the paper.
Theorem. If \(\Delta\) is a fundamental discriminant with \(\left(\frac{\Delta}{p}\right)=1\) and \(\varepsilon\left(G;\Delta\right)=-1\) then \(L'\left(G,\chi_{\Delta},1\right)=0\) if and only if \(c_{g}^{+}\left(\Delta\right)\) is algebraic.
From the relationship \(\xi_{\frac{1}{2}}\left(f\right)=\left\| g\right\| ^{-2}\cdot g\) it is easy to see that \(b_{g}\left(n\right)=-4\sqrt{\pi n}\left\| g\right\| \cdot c_{g}^{-}\left(-n\right)\) and it follows that the coefficients of the non-holomorphic part are well-understood. In particular, the quotients \(c_{g}^{-}\left(-n\right)/c_{g}^{-}\left(-1\right)\) are all algebraic numbers. In contrast to this situation, the coefficients of the holomorphic part are more mysterious and are believed to be independent transcendental numbers in general. Additionally the coefficients have totally different asymptotic behavior with \(c_{g}^{-}\left(-n\right)\) growing at most polynomially while \(c_{g}^{+}\left(-n\right)=O(e^{c_{1}\sqrt{n}})\), for some constant \(c_{1}>0\), as \(n\to\infty\). For a comprehensive discussion of the algebraicity of harmonic weak Maass forms see K. Ono [Ramanujan J. 20, No. 3, 297–309 (2009; Zbl 1247.11053)].
Although the theorem above can be stated in relatively simple terms, the proof is very intricate and makes heavy use of tools from arithmetic geometry and in particular the theory of Heegner divisors and differentials of the third kind.
The basic ideas behind the key steps can be described as follows: First of all a twisted regularized theta lift is used to lift the harmonic weak Maass form \(f_{g}\) to a Green’s function, \(\Phi_{\Delta,r}\left(z,f_{g}\right)\) corresponding to a certain twisted Heegner divisor. It is then shown that the Fourier coefficients of \(\Phi_{\Delta,r}(z,f_{g})\) (which are directly related to those of \(f_{g}\)) are algebraic precisely if the Heegner divisor \(y_{\Delta,r}(f_{g})\) vanishes in \(J(\mathbb{Q}(\sqrt{\Delta}))\otimes\mathbb{C}\) where \(J\) is the Jacobian of \(\Gamma_{0}\left(p\right)\) (see Theorem 7.6). The final step is to use the Gross-Zagier theorem to establish the equivalence between the vanishing of \(y_{\Delta,r}(f_{g})\) and the vanishing of the derivative \(L'\left(G,\chi_{\Delta},1\right)\) (see Theorem 7.8).
During the course of the proof of the main results the authors also establish many results of independent interest, especially in the theory of generalized twisted theta lifts and Borcherds products (see Sections 5 and 6). In the last section of the paper, the authors provide an extensive collection of examples which illustrate many of the most important results.


11F37 Forms of half-integer weight; nonholomorphic modular forms
11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
11G05 Elliptic curves over global fields
11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture
Full Text: DOI arXiv


[1] B. J. Birch and N. M. Stephens, ”Computation of Heegner points,” in Modular Forms, Chichester: Horwood, 1984, pp. 13-41. · Zbl 0559.14010
[2] A. R. Booker, A. Strömbergsson, and A. Venkatesh, ”Effective computation of Maass cusp forms,” Internat. Math. Res. Not., vol. 2006, p. I, 2006. · Zbl 1154.11018
[3] R. E. Borcherds, ”Automorphic forms with singularities on Grassmannians,” Invent. Math., vol. 132, iss. 3, pp. 491-562, 1998. · Zbl 0919.11036
[4] R. E. Borcherds, ”The Gross-Kohnen-Zagier theorem in higher dimensions,” Duke Math. J., vol. 97, iss. 2, pp. 219-233, 1999. · Zbl 0967.11022
[5] R. E. Borcherds, ”Correction to: “The Gross-Kohnen-Zagier theorem in higher dimensions” [Duke Math. J. 97 (1999), no. 2, 219-233; MR1682249 (2000f:11052) Zbl 0967.11022],” Duke Math. J., vol. 105, iss. 1, pp. 183-184, 2000. · Zbl 1017.11016
[6] K. Bringmann and K. Ono, ”The \(f(q)\) mock theta function conjecture and partition ranks,” Invent. Math., vol. 165, iss. 2, pp. 243-266, 2006. · Zbl 1135.11057
[7] K. Bringmann and K. Ono, ”Dyson’s ranks and Maass forms,” Ann. of Math., vol. 171, pp. 419-449, 2010. · Zbl 1277.11096
[8] K. Bringmann, K. Ono, and R. C. Rhoades, ”Eulerian series as modular forms,” J. Amer. Math. Soc., vol. 21, iss. 4, pp. 1085-1104, 2008. · Zbl 1208.11065
[9] J. H. Bruinier, Borcherds Products on O(2, \(l\)) and Chern Classes of Heegner Divisors, New York: Springer-Verlag, 2002, vol. 1780. · Zbl 1004.11021
[10] J. H. Bruinier and J. Funke, ”On two geometric theta lifts,” Duke Math. J., vol. 125, iss. 1, pp. 45-90, 2004. · Zbl 1088.11030
[11] J. H. Bruinier, J. I. Burgos Gil, and U. Kühn, ”Borcherds products and arithmetic intersection theory on Hilbert modular surfaces,” Duke Math. J., vol. 139, iss. 1, pp. 1-88, 2007. · Zbl 1208.11077
[12] J. H. Bruinier, K. Ono, and R. Rhoades, ”Differential operators for harmonic weak Maass forms and the vanishing of Hecke eigenvalues,” Math. Ann., vol. 342, pp. 673-693, 2008. · Zbl 1246.11098
[13] J. H. Bruinier and O. Stein, ”The Weil representation and Hecke operators for vector valued modular forms,” Math. Z., vol. 264, iss. 2, pp. 249-270, 2010. · Zbl 1277.11034
[14] J. H. Bruinier and F. Strömberg, Computation of harmonic weak Maass forms. · Zbl 1304.11028
[15] J. I. Burgos Gil, J. Kramer, and U. Kühn, ”Cohomological arithmetic Chow rings,” J. Inst. Math. Jussieu, vol. 6, iss. 1, pp. 1-172, 2007. · Zbl 1115.14013
[16] M. Eichler and D. Zagier, The theory of Jacobi forms, Boston, MA: Birkhäuser, 1985. · Zbl 0554.10018
[17] A. Folsom and K. Ono, ”Duality involving the mock theta function \(f(q)\),” J. Lond. Math. Soc., vol. 77, iss. 2, pp. 320-334, 2008. · Zbl 1189.11026
[18] D. Goldfeld, ”Conjectures on elliptic curves over quadratic fields,” in Number Theory, Carbondale 1979, New York: Springer-Verlag, 1979, vol. 751, pp. 108-118. · Zbl 0417.14031
[19] D. Goldfeld and P. Sarnak, ”Sums of Kloosterman sums,” Invent. Math., vol. 71, iss. 2, pp. 243-250, 1983. · Zbl 0507.10029
[20] P. A. Griffiths, Introduction to Algebraic Curves, Providence, RI: Amer. Math. Soc., 1989. · Zbl 0696.14012
[21] B. H. Gross, ”Heegner points on \(X_0(N)\),” in Modular Forms, Chichester: Horwood, 1984, pp. 87-105. · Zbl 0559.14011
[22] B. H. Gross, ”Heights and the special values of \(L\)-series,” in Number Theory, Providence, RI: Amer. Math. Soc., 1987, vol. 7, pp. 115-187. · Zbl 0623.10019
[23] B. H. Gross and D. B. Zagier, ”Heegner points and derivatives of \(L\)-series,” Invent. Math., vol. 84, iss. 2, pp. 225-320, 1986. · Zbl 0608.14019
[24] B. Gross, W. Kohnen, and D. Zagier, ”Heegner points and derivatives of \(L\)-series. II,” Math. Ann., vol. 278, iss. 1-4, pp. 497-562, 1987. · Zbl 0641.14013
[25] S. Katok and P. Sarnak, ”Heegner points, cycles and Maass forms,” Israel J. Math., vol. 84, iss. 1-2, pp. 193-227, 1993. · Zbl 0787.11016
[26] Y. Kawai, ”Borcherds products for higher level modular forms,” J. Math. Kyoto Univ., vol. 46, iss. 2, pp. 415-438, 2006. · Zbl 1221.11110
[27] W. Kohnen, ”Fourier coefficients of modular forms of half-integral weight,” Math. Ann., vol. 271, iss. 2, pp. 237-268, 1985. · Zbl 0542.10018
[28] W. Kohnen and D. Zagier, ”Values of \(L\)-series of modular forms at the center of the critical strip,” Invent. Math., vol. 64, iss. 2, pp. 175-198, 1981. · Zbl 0468.10015
[29] R. P. Langlands, ”Beyond endoscopy,” in Contributions to Automorphic Forms, Geometry, and Number Theory, Baltimore, MD: Johns Hopkins Univ. Press, 2004, pp. 611-697. · Zbl 1078.11033
[30] W. J. McGraw, ”The rationality of vector valued modular forms associated with the Weil representation,” Math. Ann., vol. 326, iss. 1, pp. 105-122, 2003. · Zbl 1018.11021
[31] K. Ono and C. Skinner, ”Non-vanishing of quadratic twists of modular \(L\)-functions,” Invent. Math., vol. 134, iss. 3, pp. 651-660, 1998. · Zbl 0937.11017
[32] K. Ono, ”Nonvanishing of quadratic twists of modular \(L\)-functions and applications to elliptic curves,” J. Reine Angew. Math., vol. 533, pp. 81-97, 2001. · Zbl 1065.11032
[33] K. Ono, ”Unearthing the visions of a master: harmonic Maass forms in number theory,” in Proc. 2008 Harvard-MIT Current Developments in Mathematics Conference, Somerville, MA: Internat. Press, 2009, pp. 347-454. · Zbl 1229.11074
[34] A. P. Ogg, ”Rational points on certain elliptic modular curves,” in Analytic Number Theory, Providence, R.I.: Amer. Math. Soc., 1973, pp. 221-231. · Zbl 0273.14008
[35] A. Perelli and J. Pomykała, ”Averages of twisted elliptic \(L\)-functions,” Acta Arith., vol. 80, iss. 2, pp. 149-163, 1997. · Zbl 0878.11022
[36] W. A. de Pribitkin, ”A generalization of the Goldfeld-Sarnak estimate on Selberg’s Kloosterman zeta-function,” Forum Math., vol. 12, iss. 4, pp. 449-459, 2000. · Zbl 0991.11021
[37] P. Sarnak, ”Maass cusp forms with integer coefficients,” in A Panorama of Number Theory or the View from Baker’s Garden, Cambridge: Cambridge Univ. Press, 2002, pp. 121-127. · Zbl 1035.11023
[38] A. J. Scholl, ”Fourier coefficients of Eisenstein series on noncongruence subgroups,” Math. Proc. Cambridge Philos. Soc., vol. 99, iss. 1, pp. 11-17, 1986. · Zbl 0564.10023
[39] B. Setzer, ”Elliptic curves of prime conductor,” J. London Math. Soc., vol. 10, pp. 367-378, 1975. · Zbl 0324.14005
[40] G. Shimura, ”On modular forms of half integral weight,” Ann. of Math., vol. 97, pp. 440-481, 1973. · Zbl 0266.10022
[41] N. Skoruppa, ”Developments in the theory of Jacobi forms,” in Automorphic Functions and their Applications, Khabarovsk: Acad. Sci. USSR Inst. Appl. Math., 1990, pp. 167-185. · Zbl 0745.11029
[42] N. Skoruppa, ”Explicit formulas for the Fourier coefficients of Jacobi and elliptic modular forms,” Invent. Math., vol. 102, iss. 3, pp. 501-520, 1990. · Zbl 0715.11024
[43] N. Skoruppa and D. Zagier, ”Jacobi forms and a certain space of modular forms,” Invent. Math., vol. 94, iss. 1, pp. 113-146, 1988. · Zbl 0651.10020
[44] J. B. Tunnell, ”A classical Diophantine problem and modular forms of weight \(3/2\),” Invent. Math., vol. 72, iss. 2, pp. 323-334, 1983. · Zbl 0515.10013
[45] M. Waldschmidt, Nombres Transcendants et Groupes Algébriques, Paris: Société Mathématique de France, 1979, vol. 69. · Zbl 0428.10017
[46] J. -L. Waldspurger, ”Sur les coefficients de Fourier des formes modulaires de poids demi-entier,” J. Math. Pures Appl., vol. 60, iss. 4, pp. 375-484, 1981. · Zbl 0431.10015
[47] D. Zagier, ”\(L\)-series of elliptic curves, the Birch-Swinnerton-Dyer conjecture, and the class number problem of Gauss,” Notices Amer. Math. Soc., vol. 31, iss. 7, pp. 739-743, 1984. · Zbl 0547.14014
[48] D. Zagier, ”Traces of singular moduli,” in Motives, Ppolylogarithms and Hodge Theory, Part I, Int. Press, Somerville, MA, 2002, vol. 3, pp. 211-244. · Zbl 1048.11035
[49] D. Zagier, Ramanujan’s mock theta functions and their applications [d’après Zwegers and Bringmann-Ono]. · Zbl 1198.11046
[50] S. P. Zwegers, ”Mock \(\theta\)-functions and real analytic modular forms,” in \(q\)-Series with Applications to Combinatorics, Number Theory, and Physics, Providence, RI: Amer. Math. Soc., 2001, vol. 291, pp. 269-277. · Zbl 1044.11029
[51] S. P. Zwegers, ”Mock theta functions,” PhD Thesis , Universiteit Utrecht, 2002. · Zbl 1194.11058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.