zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A q-analog of the $_5F_4(1)$ summation theorem for hypergeometric series well-poised in $SU(n)$. (English) Zbl 0586.33010
As an application of a general q-difference equation for basic hypergeometric series well-poised in $SU(n)$, an elementary proof is given of a q-analog of Holman’s $SU(n)$ generalization of the terminating $\sb 5F\sb 4(1)$ summation theorem. This provides an $SU(n)$ generalization of the terminating $\sb 6\psi\sb 5$ summation theorem for classical basic hypergeometric series.

MSC:
33C80Connections of hypergeometric functions with groups and algebras
33D05$q$-gamma functions, $q$-beta functions and integrals
WorldCat.org
Full Text: DOI
References:
[1] Andrews, G. E.: Applications of basic hypergeometric functions. SIAM rev. 16, 441-484 (1974) · Zbl 0299.33004
[2] Andrews, G. E.: Problems and prospects for basic hypergeometric functions. Theory and applications of special functions, 191-224 (1975)
[3] Andrews, G. E.: G.crota”the theory of partitions,” vol. 2, ”encyclopedia of mathematics and its applications”. ”The theory of partitions,” vol. 2, ”encyclopedia of mathematics and its applications” 2 (1976)
[4] Andrews, G. E.; Askey, R.: Enumeration of partitions: the role of Eulerian series and q-orthogonal polynomials. Higher combinatorics (1977) · Zbl 0381.10008
[5] Appéll, P.; De Fériet, J. Kampé: Fonctions hypergéometriques et hypersphériques; polynomes d’hermites. (1926)
[6] Askey, R.; Ismail, M.: The very well-poised $6{\psi}$6. Proc. amer. Math. soc. 77, 218-222 (1979) · Zbl 0412.33005
[7] Bailey, W. N.: Generalized hypergeometric series. Cambridge mathematical tract 32 (1935) · Zbl 0011.02303
[8] Bailey, W. N.: Series of hypergeometric type which are infinite in both directions. Quart. J. Math. 7, 105-115 (1936) · Zbl 0014.16003
[9] Biedenharn, L.; Iii, W. Holman; Milne, S.: The invariant polynomials characterizing $U(n)$ tensor operators \langlep, q,$\dots , q, 0,\dots , 0\rangle $having maximal null space. Adv. in appl. Math. 1, 390-472 (1980) · Zbl 0457.33010
[10] Biedenharn, L. C.; Gustafson, R. A.; Milne, S. C.: An umbral calculus for polynomials characterizing $U(n)$ tensor operators. Adv. in math. 51, 36-90 (1984) · Zbl 0534.33010
[11] Biedenharn, L. C.; Louck, J. D.; Chacon, E.; Ciftan, M.: On the structure of the canonical tensor operators in the unitary groups. I. an extension of the pattern calculus rules and the canonical splitting in $U(3)$. J. math. Phys. 13, 1957-1984 (1972) · Zbl 0253.20069
[12] Biedenharn, L. C.; Louck, J. D.: On the structure of the canonical tensor operators in the unitary groups. II. the tensor operators in $U(3)$ characterized by the maximal null space. J. math. Phys. 13, 1985-2001 (1972) · Zbl 0253.20070
[13] Biedenharn, L. C.; Louck, J. D.: G.-crota”angular momentum in quantum physics: theory and applications,” vol. 8, ”encyclopedia of mathematics and its applications”. ”Angular momentum in quantum physics: theory and applications,” vol. 8, ”encyclopedia of mathematics and its applications” 8 (1981) · Zbl 0474.00023
[14] Biedenharn, L. C.; Louck, J. D.: G.-crota”the racah-Wigner algebra in quantum theory,” vol. 9, ”encyclopedia of mathematics and its applications”. ”The racah-Wigner algebra in quantum theory,” vol. 9, ”encyclopedia of mathematics and its applications” 9 (1981) · Zbl 0474.00024
[15] Biedenharn, L. C.; Gustafson, R. A.; Lohe, M. A.; Louck, J. D.; Milne, S. C.: Special functions and group theory in theoretical physics. Proceedings, mathematisches forschunginstitut oberwolfach, 129-162 (13-19 March, 1983)
[16] L. C. Biedenharn, R. A. Gustafson, and S. C. Milne, U(n) Wigner coefficients, the path sum formula and invariant G-functions, Adv. in Appl. Math., in press. · Zbl 0586.33015
[17] Exton, H.: Multiple hypergeometric functions and applications. (1976) · Zbl 0337.33001
[18] Exton, H.: 5th ed.handbook of hypergeometric integrals: theory, applications, tables, computer programs. Handbook of hypergeometric integrals: theory, applications, tables, computer programs (1978) · Zbl 0377.33001
[19] Exton, H.: Q-hypergeometric functions and applications. (1983) · Zbl 0514.33001
[20] Gustafson, R. A.; Milne, S. C.: Schur functions and the invariant polynomials characterizing $U(n)$ tensor operators. Adv. in appl. Math. 4, 422-478 (1983) · Zbl 0534.33009
[21] Gustafson, R. A.; Milne, S. C.: Schur functions, good’s identity, and hypergeometric series well poised in $SU(n)$. Adv. in math. 48, 177-188 (1983) · Zbl 0516.33015
[22] R. A. Gustafson and S. C. Milne, A new symmetry for Biedenharn’s G-functions and classical hypergeometric series, Adv. in Math., in press. · Zbl 0586.33013
[23] R. A. Gustafson and S. C. Milne, A q-analog of transposition symmetry for invariant G-functions, J. of Math. Anal. and Appl., in press. · Zbl 0587.33010
[24] Hahn, W.: Beitrage zur theorie der heinesehen reihen, die 24 integrale der hypergeometrischen q-differenzengleichung, das q-analogen der Laplace transformation. Math. nachr. 2, 263-278 (1949) · Zbl 0033.05703
[25] Hahn, W.: Über die hoheren heineschen rechen und eine einheitliche theorie der sogennanten speziellen funktionen. Math. nachr. 3, 257-294 (1950) · Zbl 0038.05002
[26] Iii, W. J. Holman: Summation theorems for hypergeometric series in $U(n)$. SIAM J. Math. anal. 11, 523-532 (1980) · Zbl 0454.33010
[27] Iii, W. J. Holman; Biedenharn, L. C.; Louck, J. D.: On hypergeometric series well-poised in $SU(n)$. SIAM J. Math. anal. 7, 529-541 (1976) · Zbl 0329.33013
[28] Jackson, F. H.: On basic double hypergeometric functions. Quart. J. Math. Oxford 13, 69-82 (1942) · Zbl 0060.19809
[29] Jackson, F. H.: Basic double hypergeometric functions (II). Quart. J. Math. Oxford 15, 49-61 (1944) · Zbl 0060.19810
[30] Louck, J. D.; Biedenharn, L. C.: On the structure of the canonical tensor operators in the unitary groups. III. further developments of the boson polynomials and their implications. J. math. Phys. 14, 1336-1357 (1973)
[31] Mathai, A. M.; Saxena, R. K.: Generalized hypergeometric functions with applications in statistics and physical sciences. Lecture notes in mathematics 348 (1973) · Zbl 0272.33001
[32] Jr., W. Miller: Lie theory and q-difference equations. SIAM J. Math. anal. 1, No. 2, 171-178 (1970)
[33] Milne, S. C.: A multiple series transformation of the very well poised 2k + $4{\psi}$2k + 4. Pacific J. Math. 91, 419-430 (1980) · Zbl 0405.40004
[34] Milne, S. C.: Hypergeometric series well-poised in $SU(n)$ and a generalization of biedenharn’s G-functions. Adv. in math. 36, 169-211 (1980) · Zbl 0451.33010
[35] Milne, S. C.: A new symmetry related to $SU(n)$ for classical basic hypergeometric series. Adv. in math. 57, 71-90 (1985) · Zbl 0586.33012
[36] S. C. Milne, A q-analog of hypergeometric series well-posed in SU(n) and invariant G-functions, Adv. in Math., in press. · Zbl 0586.33014
[37] Milne, S. C.: An elementary proof of the macdonald identities for $A(1)$l. Adv. in math. 57, 34-70 (1985) · Zbl 0586.33011
[38] Slater, L. J.: A new proof of Rogers transformations of infinite series. Proc. London math. Soc. 53, No. 2, 460-475 (1951) · Zbl 0044.06102
[39] Slater, L. J.: Generalized hypergeometric functions. (1966) · Zbl 0135.28101
[40] Watson, G. N.: A new proof of the Rogers-Ramanujan identities. J. London math. Soc. 4, 4-9 (1930)