zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A q-analog of hypergeometric series well-poised in SU(n) and invariant G-functions. (English) Zbl 0586.33014
We introduce natural q-analogs of hypergeometric series well-poised in SU(n), the related hypergeometric series in U(n), and invariant G-functions. We prove that both the SU(n) multiple q-sereis and the invariant G-functions satisfy general q-difference equations. Both the SU(N) and U(n) q-series are new multivariable generalizations of classical basic hypergeometric series of one variable. We prove an identity which expresses our U(n) multiple q-series as a finite sum of finite products of classical basic hypergeometric series. These U(n) q- sereis also satisfy an elegant reduction formula which is analogous to the ”inclusion lemma” for classical invariant G-functions.

MSC:
33C80Connections of hypergeometric functions with groups and algebras
33C60Hypergeometric integrals and functions defined by them
33C05Classical hypergeometric functions, ${}_2F_1$
22E70Applications of Lie groups to physics; explicit representations
WorldCat.org
Full Text: DOI
References:
[1] Andrews, G. E.: Applications of basic hypergeometric functions. SIAM rev. 16, 441-484 (1974) · Zbl 0299.33004
[2] Andrews, G. E.: Problems and prospects for basic hypergeometric functions. Theory and application of special functions, 191-224 (1975)
[3] Andrews, G. E.: G.-crotaencycopedia of mathematics & its applications. The theory of partitions 2 (1976)
[4] Appéll, P.; De Fériet, J. Kampé: Fonctions hypergéométriques et hypersphériques: polynomes d’hermites. (1926)
[5] Bailey, W. N.: Generalized hypergeometric series. Cambridge mathematical tract no. 32 (1935) · Zbl 0011.02303
[6] Biedenharn, L.; Iii, W. Holman; Milne, S.: The invariant polynomials characterizing $U(n)$ tensor operators \langlep, q,$\dots , q, 0,\dots , 0\rangle $having maximal null space. Adv. in appl. Math. 1, 390-472 (1980) · Zbl 0457.33010
[7] Biedenharn, L. C.; Gustafson, R. A.; Milne, S. C.: An umbral calculus for polynomials characterizing $U(n)$ tensor operators. Adv. in math. 51, 36-90 (1984) · Zbl 0534.33010
[8] Biedenharn, L. C.; Louck, J. D.: A pattern calculus for tensor operators in the unitary groups. Comm. math. Phys. 8, 89-131 (1968) · Zbl 0155.32405
[9] Biedenharn, L. C.; Louck, J. D.; Chàcon, E.; Ciftan, M.: On the structure of the canonical tensor operators in the unitary groups. I. an extension of the pattern calculus rules and the canonical splitting in $U(3)$. J. math. Phys. 13, 1957-1984 (1972) · Zbl 0253.20069
[10] Biedenharn, L. C.; Louck, J. D.: On the structure of the canonical tensor operators in the unitary groups. II. the tensor operators in $U(3)$ characterized by the maximal nul space. J. math. Phys. 13, 1985-2001 (1972) · Zbl 0253.20070
[11] Biedenharn, L. C.; Louck, J. D.: G.-crotaencyclopedia of mathematics & its applications. Angular momentum in quantum physics: theory and applications 8 (1981) · Zbl 0474.00023
[12] Biedenharn, L. C.; Louck, J. D.: G.-crotaencyclopedia of mathematics & its applications. The racah-Wigner algebra in quantum theory 9 (1981) · Zbl 0474.00023
[13] Biedenharn, L. C.; Gustafson, R. A.; Lohe, M. A.; Louck, J. D.; Milne, S. C.: Special functions and group theory in theoretical physics. Proceedings, mathematisches forschunginstitut oberwolfach, 129-162 (13-19 March 1983)
[14] L. C. Biedenharn, R. A. Gustafson, and S. C. Milne, U(n) Wigner coefficients, the path sum formula and invariant G-functions, Adv. in Appl. Math., in press. · Zbl 0586.33015
[15] Exton, H.: Multiple hypergeometric functions and applications. (1976) · Zbl 0337.33001
[16] Exton, H.: Handbook of hypergeometric integrals: theory, applications, tables, computer programs. (1978) · Zbl 0377.33001
[17] Exton, H.: Q-hypergeometric functions and applications. (1983) · Zbl 0514.33001
[18] Good, I. J.: Short proof of a conjecture of Dyson. J. math. Phys. 11, 1884 (1970) · Zbl 0194.05903
[19] Greub, W.: Linear algebra. (1975) · Zbl 0317.15002
[20] Gustafson, R. A.; Milne, S. C.: Schur functions and the invariant polynomials characterizing $U(n)$ tensor operators. Adv. in appl. Math. 4, 422-478 (1983) · Zbl 0534.33009
[21] Gustafson, R. A.; Milne, S. C.: Schur functions, good’s identity, and hypergeometric series well poised in $SU(n)$. Adv. in math. 48, 177-188 (1983) · Zbl 0516.33015
[22] R. A. Gustafson and S. C. Milne, A new symmetry for Biedenharn’s G-functions and classical hypergeometric series, Adv. in Math., in press. · Zbl 0586.33013
[23] R. A. Gustafson and S. C. Milne, A q-analog of transposition symmetry for invariant G-functions, J. Math. Anal. Appl., in press. · Zbl 0587.33010
[24] Hahn, W.: Beitrage zur theorie der heineschen reihen, die 24 integrale der hypergeometrischen q-differenzengleichung, das q-analogen der Laplace transformation. Math. nachr. 2, 263-278 (1949) · Zbl 0033.05703
[25] Hahn, W.: Über die höheren heineschen reihen und eine einheitliche theorie der sogenannten speziellen funktionen. Math. nachr. 3, 257-294 (1950) · Zbl 0038.05002
[26] Hildebrand, F.: Introduction to numerical analysis. (1956) · Zbl 0070.12401
[27] Iii, W. J. Holman: Summation theorems for hypergeometric series in $U(n)$. SIAM J. Math. anal. 11, 523-532 (1980) · Zbl 0454.33010
[28] Iii, W. J. Holman; Biedenharn, L. C.; Louck, J. D.: On hypergeometric series well-poised in $SU(n)$. SIAM J. Math. anal. 7, 529-541 (1976) · Zbl 0329.33013
[29] Horn, J.: Ueber die convergenz der hypergeometrische reihen zweier und dreier veränderlichen. Math. ann. 34, 544-600 (1889)
[30] Louck, J. D.: Theory of angular momentum in N-dimensional space. Los alamos scientific laboratory report LA-2451 (1960)
[31] Louck, J. D.; Biedenharn, L. C.: On the structure of the canonical tensor operators in the unitary groups. III. further developments of the boson polynomials and their implications. J. math. Phys. 14, 1336-1357 (1973)
[32] Macdonald, I. G.: Symmetric functions and Hall polynomials. (1979) · Zbl 0487.20007
[33] Mathai, A. M.; Saxena, R. K.: Generalized hypergeometric functions with applications in statistics and physical sciences. Lecture notes in mathematics 348 (1973) · Zbl 0272.33001
[34] Milne, S. C.: Hypergeometric series well-poised in $SU(n)$ and a generalization of biedenharn’s G-functions. Adv. in math. 36, 169-211 (1980) · Zbl 0451.33010
[35] S. C. Milne, A new symmetry related to SU(n) for classical basic hypergeometric series, Adv. in Math., in press. · Zbl 0586.33012
[36] S. C. Milne, A q-analog of the 5F4(1) summation theorem for hypergeometric series well-poised in SU(n), Adv. in Math., in press. · Zbl 0586.33010
[37] S. C. Milne, An elementary proof of the Macdonald identities for A(1)l, Adv. in Math., in press. · Zbl 0586.33011
[38] Rainville, E. D.: Special functions. (1960) · Zbl 0092.06503
[39] Slater, L. J.: Generalized hypergeometric functions. (1966) · Zbl 0135.28101
[40] Wilson, K.: Proof of a conjecture by Dyson. J. math. Phys. 3, 1040-1043 (1962) · Zbl 0113.21403