Mujica, Jorge Complex analysis in Banach spaces. Holomorphic functions and domains of holomorphy in finite and infinite dimensions. (English) Zbl 0586.46040 North-Holland Mathematics Studies, 120. Notas de Matemática, 107. Amsterdam/New York/Oxford: North-Holland. XI, 434 p. $ 55.25; Dfl. 160.00 (1986). It is well known that problems arising from the study of holomorphic continuation and approximation have been central in the development of complex analysis in finitely many variables. In this book the author presents a unified view of these topics both in finite and in infinite dimension. Based on a course given in Campinas this book gives a complete, clear and self-contained exposition of the main results obtained in Banach spaces as well as in \({\mathbb{C}}^ n.\) The first part is devoted to the basic definitions and properties of holomorphic mappings and domains of holomorphy. The second part deals with differential forms and the \({\bar \partial}\)-operator. Polynomially convex domains and commutative Banach algebras are investigated. The third part introduces plurisubharmonic functions and pseudo-convex domains. A chapter is devoted to the Levi problem and to the solution of the \({\bar \partial}\)-equation in pseudoconvex domains. In the last part the preceding results are extended in the natural setting of Riemann domains. Reviewer: Ph.Noverraz Cited in 4 ReviewsCited in 270 Documents MSC: 46G20 Infinite-dimensional holomorphy 46-02 Research exposition (monographs, survey articles) pertaining to functional analysis 32D05 Domains of holomorphy 32U05 Plurisubharmonic functions and generalizations Keywords:d-bar-operator; holomorphic continuation and approximation; holomorphic mappings; domains of holomorphy; differential forms; Polynomially convex domains; commutative Banach algebras; plurisubharmonic functions; pseudo- convex domains; Levi problem × Cite Format Result Cite Review PDF