Christopeit, Norbert Quasi-least-squares estimation in semimartingale regression models. (English) Zbl 0586.62137 Stochastics 16, 255-278 (1986). The class of linear regression models \[ y_ t=y_ o+B\int^{t}_{0}x_ sd\theta_ s+M_ t,\quad t\geq 0, \] is considered. The m-dimensional process \(\{y_ t\}\) is a semimartingale which is generated as the sum of the k-dimensional input process \(\{x_ t\}\), integrated with respect to some increasing process \(\{\theta_ t\}\) and weighted with some \(m\times k\) parameter matrix B, plus an unobservable disturbance \(\{M_ t\}\) which is assumed to be an m- dimensional martingale. Denoting \(\lambda_{\max}(t)\) resp. \(\lambda_{\min}(t)\) the maximal resp. minimal eigenvalue of \(Z_ t=\int^{t}_{o}x_ sx'\!_ xd\theta_ s\), it is supposed that the assumption \[ \lambda_{\min}(T)\to \infty \quad a.e.\quad and\quad (\log \lambda_{\max}(T))^{1-\delta}=O(\lambda_{\min}(T))\quad a.e. \] for some \(\delta >0\) or, in its weaker form: \[ \lambda_{\min}(T)\to \infty \quad a.e.\quad and\quad \log \lambda_{\max}(T)=o(\lambda_{\min}(T))\quad a.e. \] holds. Under this assumption and some other technical condition it is shown that the estimator \[ \hat B'\!_ T=(\int^{T}_{0}x_ sx'\!_ sd\theta_ s)^{-1}\int^{T}_{0}x_ sdy'\!_ s \] converges a.e. to the true parameter matrix B. Finally some examples are investigated using the main theorem. Reviewer: D.Jaruškova Cited in 13 Documents MSC: 62M09 Non-Markovian processes: estimation 62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH) 60G44 Martingales with continuous parameter 62M05 Markov processes: estimation; hidden Markov models Keywords:quasi-least-squares estimation; stochastic regressors; local martingale; maximal eigenvalue of the design matrix; minimal eigenvalue; transformation formula; stability properties; strong consistency; linear regression models; semimartingale × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Christopeit N., Technical Report, (1984) [2] Doléans-Dade C., Lecture Notes in Math., pp 124– (1970) [3] Elliot R. J., Stochastic Calculus and Applications, (1982) · JFM 14.0416.01 [4] Lai, T. L. and wei, C. Z. 1982.Least Spuares Estimates In Stochastic Regression Models With Applications To Identification and Control of Dynamic Ststems, Vol. 10, 154–166. Ann. Statist. · Zbl 0649.62060 [5] DOI: 10.1016/0047-259X(83)90002-7 · Zbl 0509.62081 · doi:10.1016/0047-259X(83)90002-7 [6] Liptser R. Sh., Stochastics, 3 pp 229– (1980) [7] Liptser R. Sh., Statistics of Random Processes I, (1977) [8] DOI: 10.1137/1125084 · Zbl 0471.60038 · doi:10.1137/1125084 [9] DOI: 10.1515/9783110845563 · Zbl 0503.60054 · doi:10.1515/9783110845563 [10] Neveu J., Discrete-Parameter Martingales, (1975) · Zbl 0345.60026 [11] Pollard D., Convergence of Stochastic Processes, (1984) · Zbl 0544.60045 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.