A technique of upstream type applied to a linear nonconforming finite element approximation of convective diffusion equations. (English) Zbl 0586.65080

An approximation of upstream type for the convective term of convective diffusion equations using the linear nonconforming finite elements is analyzed. The authors prove the discrete maximum principle for the upstream-like scheme and establish O(h) error estimate of the scheme in the \(H^ 1\)-norm. Some numerical examples are presented.
Reviewer: J.Haslinger


65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
65N15 Error bounds for boundary value problems involving PDEs
Full Text: DOI EuDML


[1] 1. K. BABA and M. TABATA, On a conservative upwind finite element scheme for convective diffusion equations, R.A.I.R.O., Anal. Numér., Vol. 15, 1981, pp. 3-25. Zbl0466.76090 MR610595 · Zbl 0466.76090
[2] 2. F. BREZZI, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, R.A.I.R.O., Anal. Numér., Vol. 8, 1974, pp. 129-151. Zbl0338.90047 MR365287 · Zbl 0338.90047
[3] 3. P. G. CIARLET, Discrete maximum principle for finite-difference operators, Aeq. Math., Vol. 4, 1970, pp. 338-352. Zbl0198.14601 MR292317 · Zbl 0198.14601 · doi:10.1007/BF01844166
[4] 4. P. G. CIARLET, The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, 1978. Zbl0383.65058 MR520174 · Zbl 0383.65058
[5] 5. P. G. CIARLET and P.-A. RAVIART, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg., Vol. 2, 1973, pp. 17-31. Zbl0251.65069 MR375802 · Zbl 0251.65069 · doi:10.1016/0045-7825(73)90019-4
[6] 6. R. COURANT and D. HILBERT, Methods of Mathematical Physics, Vol. II, Interscience Publishers, New York, 1962. Zbl0099.29504 MR65391 · Zbl 0099.29504
[7] 7. M. CROUZEIX and P.-A. RAVIART, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I, R.A.I.R.O., Anal. Numér., Vol. 7, 1973, pp. 33-76. Zbl0302.65087 MR343661 · Zbl 0302.65087
[8] 8. A. DERVIEUX and F. THOMASSET, Sur l’approximation d’écoulements multifluides incompressibles visqueux par des éléments finis triangulaires de degré un, Rapports de Recherche 67 (LABOLIA INRIA), Avril, 1981.
[9] 9. H. FUJII, Some remarks on finite element analysis of time-dependent field problem, Theory and Practice in Finite Element Structural Analysis, Y. Yamada and R. H. Gallagher, Eds., University of Tokyo Press, 1973, pp. 91-106. Zbl0373.65047 · Zbl 0373.65047
[10] 10. T. IKEDA, Artificial viscosity in finite element approximations to the diffusion equations with drift terms, H. Fujita and M. Yamaguti, Eds., Lecture Notes in Num. Appl. Anal., Kinokuniya, Tokyo, Vol. 2, 1980, pp. 59-78. Zbl0468.76087 MR684080 · Zbl 0468.76087
[11] 11. H. KANAYAMA, Discrete models for salinity distribution in a bay - Conservative law and maximum principle, Proc. Japan Nat. Congr. for Applied Mech., 1980, Theoretical and Applied Mechanics, Vol. 28, 1980, pp. 559-579.
[12] 12. F. KIKUCHI, Discrete maximum principle and artificial viscosity in finite element approximation to convective diffusion equations, ISAS Report., No. 550, 1977.
[13] 13. F. KIKUCHI and T. USHIJIMA, Theoretical analysis of some finite element schemes for convective diffusion equations, R. H. Gallagher, D. H. Norrie, J. T. Oden and O. C. Zienkiewicz, Eds., Finite Elements in Fluids, John Wiley & Sons Ltd, Vol. 4, 1982, pp. 67-87. MR647391
[14] 14. K. OHMORI, The discrete maximum principle for nonconforming finite element approximations to stationary convective diffusion equations, Math. Rep. Toyama Univ., Vol. 2, 1979, pp. 33-52. Corrections, ibid.,Vol. 4, 1981, pp. 179-182. Zbl0459.65073 MR542377 · Zbl 0459.65073
[15] 15. P.-A. RAVIART and J. M. THOMAS, Primal hybrid finite element methods for 2nd order elliptic equations, Math. Comp., Vol. 31, 1977, pp. 391-413. Zbl0364.65082 MR431752 · Zbl 0364.65082 · doi:10.2307/2006423
[16] 16. R. TEMAM, Navier-Stokes Equations, North Holland, Amsterdam, 1977. Zbl0383.35057 · Zbl 0383.35057
[17] 17. F. THOMASSET, Implementation of Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, New York, 1982. Zbl0475.76036 MR720192 · Zbl 0475.76036
[18] 18. T. USHIJIMA, On a certain finite element method of the upstream type applied to convective diffusion problems, China-France Symposium on the Finite Element Method, 1982. Zbl0663.76113 MR754025 · Zbl 0663.76113
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.