×

Distribution of directional data and fabric tensors. (English) Zbl 0586.73004

Distribution of directional data is characterized by what is termed fabric tensors. A formal least square approximation is applied, and three kinds of fabric tensors are defined in connection with the choice of a basis of the space of functions on a unit sphere or a unit circle. All the resulting equations are Cartesian tensor equations, and they are interpreted in terms of the representation theory of the rotation group and the potential theory in electrodynamics. It is also shown how this characterization is related to the spherical harmonics expansion or the Fourier series expansion. Finally, a method of statistical test is presented in the Cartesian tensor form to check the true form of the distribution. A physical example is also given to illustrate the proposed technique.

MSC:

74A40 Random materials and composite materials
74A99 Generalities, axiomatics, foundations of continuum mechanics of solids
62H15 Hypothesis testing in multivariate analysis
53A45 Differential geometric aspects in vector and tensor analysis

Citations:

Zbl 0244.62005
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Oda, M., Soils and Foundations, 12, 1, 17 (1972)
[2] Oda, M., Soils and Foundations, 12, 2, 1 (1972)
[3] Oda, M., Soils and Foundations, 12, 4, 45 (1972)
[4] Oda, M.; Konishi, J., Soils and Foundations, 14, 4, 25 (1974)
[5] Oda, M.; Konishi, J.; Nemat-Nasser, S., Géotechnique, 30, 479 (1980)
[6] Kanatani, K., Powder Technol., 28, 167 (1981)
[7] Kanatani, K., Powder Technol., 30, 217 (1981)
[8] Christoffersen, J.; Mehrabadi, M. M.; Nemat-Nasser, S., J. Appl. Mech., 48, 339 (1981)
[9] Oda, M.; Nemat-Nasser, S.; Mehrabadi, M. M., Int. J. Numer. Anal. Methods Geomech., 6, 77 (1981)
[10] Mehrabadi, M. M.; Nemat-Nasser, S.; Oda, M., Int. J. Numer. Anal. Methods Geomech., 6, 95 (1982)
[11] Satake, M., Deformation and Failure of Granular Materials, (Vermeer, P. A.; Luger, H. J., Proc. IUTAM Conf.. Proc. IUTAM Conf., 1982 (1982), Balkema: Balkema Rotterdam), 63-68
[12] Kanatani, K., New Models and Constitutive Relations in the Mechanics of Granular Materials, (Jenkins, J. T.; Satake, M., Proc. US-Japan Seminar (1983), Elsevier: Elsevier Amsterdam), To be published.
[13] Mardia, K. V., Statistics of Directional Data (1972), Academic Press: Academic Press London · Zbl 0244.62005
[14] Eringen, A. C., Nonlinear Theory of Continuous Media (1962), McGraw-Hill: McGraw-Hill New York
[15] Truesdell, C.; Noll, W., The Non-linear Field Theories of Mechanics, (Handbuch der Physik III/3 (1965), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0779.73004
[16] Konishi, J.; Oda, M.; Nemat-Nasser, S., Deformation and Failure of Granular Materials, (Vermeer, P. A.; Luger, H. J., Proc. IUTAM Conf.. Proc. IUTAM Conf., 1982 (1982), Balkema: Balkema Rotterdam), 403-412
[18] Barndorff-Nielsen, O., Information and Exponential Families in Statistical Theory (1978), Wiley: Wiley New York · Zbl 0387.62011
[19] Amari, S., Annals Statistics, 10, 2, 357 (1982)
[20] Kullback, S., Information Theory and Statistics (1959), Wiley: Wiley New York · Zbl 0149.37901
[21] Hochstadt, H., The Functions of Mathematical Physics (1971), Wiley: Wiley New York · Zbl 0217.39501
[22] Lehmann, E. L., Testing Statistical Hypotheses (1959), Wiley: Wiley New York · Zbl 0089.14102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.