×

zbMATH — the first resource for mathematics

p-adic interpolation of logarithmic derivatives associated to certain Lubin-Tate formal groups. (English) Zbl 0587.12007
The purpose of this paper is to generalize, to certain commutative formal groups of dimension one and height greater than one defined over the ring of integers of a finite extension of \({\mathbb{Q}}_ p\), some results on p- adic interpolation developed by Kubota, Leopoldt, Iwasawa, Mazur, Katz and others notably for the multiplicative group \({\hat {\mathbb{G}}}_ m\), and which they used to construct p-adic L-functions.

MSC:
11S80 Other analytic theory (analogues of beta and gamma functions, \(p\)-adic integration, etc.)
14L05 Formal groups, \(p\)-divisible groups
11S40 Zeta functions and \(L\)-functions
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] P. CASSOU-NOGUES, Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta p-adiques, Inventiones Math., 51 (1979), 29-59. · Zbl 0408.12015
[2] R.F. COLEMAN, Division values in local fields, Inventiones Math., 53 (1979), 91-116. · Zbl 0429.12010
[3] K. IWASAWA, Lectures on p-adic L-functions, Annals of Math. Studies, 74 P.U.P. (1972). · Zbl 0236.12001
[4] E.E. KUMMER, Uber eine allgemeine eigenschaft der rationale entwicklungscoefficienten eines bestimmten gattung analytischer functionen, Crelle’s J., 41 (1851) 368-372, (= collected works vol. 1, pp. 358-362, Springer-Verlag (1975)).
[5] T. KUBOTA and H.W. LEOPOLDT, Eine p-adische theorie der zetawerte, Crelle’s J, 214/215 (1964), 328-339. · Zbl 0186.09103
[6] N. KATZ, Formal groups and p-adic interpolation, Astérisque, 41-42 (1977) 55-65. · Zbl 0351.14024
[7] N. KATZ, Divisibilities, congruences and cartier duality, J. Fac. Sci. Univ. Tokyo, Ser. 1 A, 28 (1982), 667-678. · Zbl 0559.14032
[8] S. LANG, Cyclotomic fields, Graduate texts in Math, Springer-Verlag (1978). · Zbl 0395.12005
[9] H.W. LEOPOLDT, Eine p-adiche theorie der zetewerte II, Crelle’s J., 274/275 (1975), 225-239.
[10] S. LICHTENBAUM, On p-adic L-functions associated to elliptic curves, Inventiones Math., 56 (1980), 19-55. · Zbl 0425.12017
[11] J. LUBIN, One-parameter formal Lie groups over p-adic integer rings, Annals of Math., 80 (1964), 464-484. · Zbl 0135.07003
[12] B. MAZUR and P. SWINNERTON-DYER, Arithmetic of Weil curves, Inventiones Math., 25 (1974), 1-61. · Zbl 0281.14016
[13] K. RUBIN, Congruences for special values of L-functions of elliptic curves with complex multiplication, Inventiones Math., 71 (1983), 339-364. · Zbl 0513.14012
[14] J.P. SERRE, Formes modulaires et fonction zêta p-adiques, In Springer Lecture Notes in Math., 350 (1973), 191-268. · Zbl 0277.12014
[15] J. TATE, P-divisible groups, Proc. Conf. On local fields, ed. T. Springer, Springer-Verlag, (1967), 153-183. · Zbl 0157.27601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.