Étude de la conduction stationnaire dans un domaine comportant une répartition périodique d’inclusions minces de grande conductivité. (French) Zbl 0587.35041

We study the stationary heat equation in a domain which comprises an \(\epsilon\) Y-periodic distribution of thin inclusions of thickness \(e\epsilon\). The limits (e\(\to 0\) then \(\epsilon\) \(\to 0)\), (\(\epsilon\) \(\to 0\) then \(e\to 0)\) and lastly (e\(\to 0\) and \(\epsilon\) \(\to 0\) together) give the same result; this shows that the relative order of magnitude between the two small parameters is without any influence upon the limit-behaviour.


35K05 Heat equation
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
35B40 Asymptotic behavior of solutions to PDEs
Full Text: DOI EuDML


[1] M. ARTOLA et G. DUVAUT, C.R.A.S. Paris, série A, t. 286 (1978), pp. 659-662. Zbl0379.73016 MR494536 · Zbl 0379.73016
[2] A. BENSOUSSAN, J. L. LIONS et G. PAPANICOLAOU, Asymptotic Analysis for Periodic Structures, Amsterdam, North-Holland, 1978. Zbl0404.35001 MR503330 · Zbl 0404.35001
[3] D. CAILLERIE, Math. Meth. in the Appl. Sci., 2 (1980), pp. 251-270. Zbl0446.73014 MR581205 · Zbl 0446.73014
[4] D. CAILLERIE, RAIRO Analyse numérique, Vol. 15,n^\circ 4 (1981). MR642495
[5] H. PHAM HUY et E. SANCHEZ-PALENCIA, J. of Math. Anal, and Appl., Vol. 47, n^\circ 2 (1974), pp. 284-309. Zbl0286.35007 MR400916 · Zbl 0286.35007
[6] E. SANCHEZ-PALENCIA, Non Homogeneous Media and Vibration Theory, Lectures Notes in Physics n^\circ 127, Berlin, Springer-Verlag (1980). Zbl0432.70002 MR578345 · Zbl 0432.70002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.