## Composite finite elements of class $$C^ k$$.(English)Zbl 0587.41004

Let $$\tau$$ be a triangulation of $$D\subset {\mathbb{R}}^ 2$$ with vertices $$A=\{A_ i,1\leq i\leq N\}$$ and $${\mathbb{P}}^ k_ n(D,\tau)=\{\nu \in C^ k(D):\forall T\in \tau$$, $$v| T\in {\mathbb{P}}_ n\}$$ where $${\mathbb{P}}_ n:=\{polynomials$$ of total degree $$\leq n\}$$. For $$u\in C^ r(D)$$, $$r\geq k$$, and V finite dimensional subspace of $$C^ k(D)$$, we consider the Hermite problem $$H^ k(A,V):=\{find$$ $$v\in V:D^{\alpha}v(A_ i)=D^{\alpha}u(A_ i)$$, $$1\leq i\leq N,| \alpha | \leq k\}$$. This problem is solvable in $$V={\mathbb{P}}^ k_ n(D,\tau)$$ iff $$n\geq 4k+1$$ (Ženišek). When $$V={\mathbb{P}}^ k_ n(D,\tau_ 3)$$, where $$\tau_ 3$$ is a subtriangulation of $$\tau$$ obtained by subdividing each $$T\in \tau$$ into 3 triangles, the problem has a solution for $$n=4k-1$$ (e.g. the $$C^ 1$$-cubic HCT triangle and a $${\mathbb{P}}^ 2_ 7$$-triangle with 31 parameters). When $$V={\mathbb{P}}^ k_ n(D,\tau_ 6)$$, where $$\tau_ 6$$ is a subtriangulation of $$\tau$$ obtained by subdividing each $$T\in \tau$$ into 6 triangles, the problem has a solution for $$n=3k-1$$ (e.g. the $$C^ 1$$-quadratic PS triangle and a $${\mathbb{P}}^ 2_ 5$$- triangle with 31 parameters). In both cases, the construction needs the partial derivatives $$D^{\alpha}u(A_ i)$$ for $$| \alpha | \leq 2k-1$$. The domain D is assumed to be polygonal, compact and connected.

### MSC:

 41A05 Interpolation in approximation theory 41A10 Approximation by polynomials 41A30 Approximation by other special function classes

Hermite problem
Full Text:

### References:

 [1] Barnhill, R. E.; Farin, G., $$C^1$$ quintic interpolation over triangles: two explicit representations, Internat. J. Numer. Methods Engrg., 17, 1763-1778 (1981) · Zbl 0477.65009 [2] Bézier, P., Mathematical and practical possibilities of UNISURF, (Barnhill, R. E.; Riesenfeld, R. F., Computer Aided Geometric Design (1974), Academic Press: Academic Press New York), 127-152 [3] Bézier, P., Essai de definition numérique des courbes et des surfaces expérimentales, (Thése (1977), Université de Paris VI) · Zbl 0157.42201 [4] Birkhoff, G.; Mansfield, L., Compatible triangular finite elements, J. Math. Anal. Appl., 47, 531-553 (1974) · Zbl 0284.35021 [5] Ciarlet, P. G., Sur l’élément de Clough et Tocher, RAIRO Rech. Opér., 2, 19-27 (1974) · Zbl 0306.65070 [6] Ciarlet, P. G., Interpolation error estimates for the reduced Hsieh-Clough-Tocher triangle, Math. Comput., 32, 142, 335-344 (1978) · Zbl 0378.65010 [7] Clough, R. W.; Tocher, J. L., Finite element stiffness matrices for analysis of plates in bending, (Conference on Matrix Methods in Structural Mechanics (1965), Wright Patterson A.F.B: Wright Patterson A.F.B Ohio) [8] Farin, G., Subsplines über Dreiecken, Dissertation (1979), Braunschweig [9] Farin, G., Bézier Polynomials over triangles and the construction of piecewise $$C^r$$-polynomials, (TR/91 (1980), Dept. of Math., Brunei University) [10] Mansfield, L., Higher order compatible triangular finite elements, Numer. Math., 22, 89-97 (1974) · Zbl 0265.65011 [11] Le Mehaute, A., Taylor interpolation of order $$n$$ at the vertices of a triangle. Applications for Hermite interpolation and finite elements, (Ziegler, Z., Approximation Theory and Applications (1981), Academic Press: Academic Press New York), 171-185 [12] Le Mehaute, A., Interpolation et approximation par des fonctions polynomiales par morceaux dans $$R^n$$, (Thése de Doctorat (1984), Université de Rennes) [13] Powell, M. J.D.; Sabin, M. A., Piecewise quadratic approximations on triangles, ACM Trans. Math. Software, 3, 4, 316-325 (1977) · Zbl 0375.41010 [14] Sablonniere, P., Interpolation d’Hermite par des surfaces de classe $$C^1$$ quadratiques par morceaux, (2éme Congrés International sur les Méthodes Numériques de l’Ingénieur (GAMNI) (1980), Dunod: Dunod Paris), 175-185 · Zbl 0453.41002 [15] Sablonniere, P., Bases de Bernstein et Approximants splines, (Thése de Doctorat (1982), Université de Lille I) [16] IMA J. Numer. Anal. (1984) [17] P. Sablonniere, Triangular finite elements in $$P^2_5T_6$$; P. Sablonniere, Triangular finite elements in $$P^2_5T_6$$ [18] P. Sablonniere, Triangular finite elements in $$P^2_7T_3$$; P. Sablonniere, Triangular finite elements in $$P^2_7T_3$$ [19] Ženišek, A., Interpolation Polynomials on the Triangle, Numer. Math., 15, 283-296 (1970) · Zbl 0216.38901 [20] Ženišek, A., A general theorem on triangular finite $$C^m$$-elements, RAIRO Anal. Numer., 2, 119-127 (1974) · Zbl 0321.41003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.