zbMATH — the first resource for mathematics

A sharp bound for the minimal number of generators of perfect height two ideals. (English) Zbl 0588.13018
Let (R,M) be a regular local ring, and let I be a perfect ideal of R - i.e., the factor ring \(A=R/I\) is Cohen-Macaulay. The author observes that if I has height h and \(I\subset M^ t\), then \(e(A)=(h^{t-1+h})+\ell (M^ t/(I+(X.)M^{t-1}))\) where e(A) is the multiplicity of A and (X.) is the preimage in M of a minimal reduction of M/I in A. Therefore, if \(h=2\) and v(I) denotes the minimal number of generators of I, then \(v(I)(v(I)-1)\leq 2e(A).\)
Examples are given of height two perfect ideals I for which this is an equality and several characterizations are given of such ideals I involving the existence of a standard basis for I of elements of order v(I)-1, and properties of the Hilbert function of R/I.
Reviewer: W.Heinzer

13E15 Commutative rings and modules of finite generation or presentation; number of generators
13H05 Regular local rings
13H15 Multiplicity theory and related topics
13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
Full Text: DOI EuDML
[1] BURCH, L.: On ideals of finite homological dimension in local rings. Math.Proc.Camb.Phil.Soc. 64,941-946 (1968) · Zbl 0172.32302 · doi:10.1017/S0305004100043620
[2] EAGON, J.A. and NORTHCOTT, D.G.: Ideals defined by matrices and a certain complex associated with them. Proc.Royal Soc.Set.A 269,188-204(1962) · Zbl 0106.25603 · doi:10.1098/rspa.1962.0170
[3] ELIAS, J. and IARROBINO, A.: Extremal Gorenstein algebras of codimension three; the Hilbert function of a Cohen-Macaulay local algebra. Preprint 1984 · Zbl 0628.13016
[4] MACAULAY; F. S. The algebraic theory of modular systems. Cambridge Univ.Press, 1916 · JFM 46.0167.01
[5] MOH, T. T.: On generators of ideals. Proc.Amer.Math. Soc. 77,309-312(1979) · Zbl 0449.13001 · doi:10.1090/S0002-9939-1979-0545586-0
[6] NORTHCOTT, D.G. and REES, D.: Reductions of ideals in local rings. Math.Proc.Camb.Phil.Soc. 50,145-158 (1954) · Zbl 0057.02601 · doi:10.1017/S0305004100029194
[7] ORECCHIA, F.: Gli esempi di Macaulay. Quaderni C.N.R. (1981)
[8] ROBBIANO, L. and VALLA, G.: Free resolutions of special tangent cones.Commutative Algebra.Proceedings of the Trento Conference.Lect.Notes in Pure and Appl. Math.Series,84.Marcel Dekker(l983) · Zbl 0558.14008
[9] SALLY, J.D.: Number of generators of ideals in local rings.Lect.Notes in Pure and Appl.Math.Series, 35.Marcel Dekker(1978) · Zbl 0395.13010
[10] VALLA, G.: Generators of ideals and multiplicities. Communications in Alg.l5(1981) · Zbl 0525.13015
[11] VALLABREGA, P. and VALLA, G.: Form rings and regular sequences, Nagoya Math.J. 72,93-101(1978) · Zbl 0362.13007
[12] VUT TRUNG, N.: Bounds for the minimum number of generators of generalised Cohen-Macaulay rings. Journal of Alg.90(1984)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.