×

zbMATH — the first resource for mathematics

Higher regulators and values of \(L\)-functions. (English. Russian original) Zbl 0588.14013
J. Sov. Math. 30, 2036-2070 (1985); translation from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat. 24, 181-238 (1984).
Let \(X\) be a complex algebraic variety, \(K_j(X)\) its algebraic \(K\)-groups. More subtle analytic invariants of elements of \(K_j(X)\) than usual Chern classes are constructed. In the case of the Chow groups they are the well-known Abel-Jacobi-Griffiths periods of an algebraic cycle. The invariants seem to be closely related with values of \(L\)-functions at integral points; conjectures and supporting computations (for curves uniformized by modular functions) are given. The main tool is a cohomology theory related with the Hodge filtration and satisfying the Poincaré duality. The characteristic classes on \(K_j(X)\) valued in those cohomology groups are defined. In terms of these classes, higher regulators are defined which reduce to the Borel regulators in the case when \(X\) is a point.
Here are some topics mentioned in the paper: Hodge conjecture, motives, Riemann-Roch theorem, multidimensional analog of Arakelov’s construction of Néron-Tate height on curves, deformation of Chern classes, Tsygan-Feigin’s theorem on the stable cohomology of current algebras. After this paper was written, C. Soulé [Sémin. Bourbaki, 37e année 1984/85, Exp. No. 644, Astérisque 133/134, 237–254 (1986; Zbl 0617.14008) and more recent papers] and R. Ramakrishnan obtained results related with those in the paper.

MSC:
14C35 Applications of methods of algebraic \(K\)-theory in algebraic geometry
18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects)
14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
PDF BibTeX Cite
Full Text: DOI
References:
[1] S. Yu. Arakelov, ”Theory of intersections of divisors on an arithmetic surface,” Izv. Akad. Nauk SSSR, Ser. Mat.,38, No. 6, 1179–1192 (1974).
[2] M. F. Atiyah, K-Theory, W. A. Benjamin (1967).
[3] A. A. Beilinson, ”Higher regulators and values of the L-functions of curves,” Funkts. Anal. Prilozhen.,14, No. 2, 46–47 (1980). · Zbl 0453.46007
[4] A. Weil, Elliptic Functions According to Eisenstein and Kronecker, Springer-Verlag (1976). · Zbl 0318.33004
[5] H. Jacquet and R. P. Langlands, Automorphic Forms on GL(2), Springer-Verlag (1970). · Zbl 0236.12010
[6] Yu. I. Manin, ”Correspondences, motifs, and monoidal transformations,” Mat. Sb.,77, No. 4, 475–507 (1968). · Zbl 0199.24803
[7] A. A. Suslin, ”Algebraic K-theory,” Itogi Nauki i Tekh. VINITI. Algebra. Topologiya. Geometriya, Vol. 20 (1982), pp. 71–152. · Zbl 0519.18011
[8] S. Bloch, ”Applications of the dilogarithm function in algebraic K-theory and algebraic geometry,” Proc. Int. Symp. on Alg. Geometry, Kyoto (1977), pp. 103–114. · Zbl 0416.18016
[9] S. Bloch, ”Higher regulators, algebraic K-theory, and zeta-functions of elliptic curves,” Irvine Univ. Preprint (1978).
[10] S. Bloch, ”Lectures on algebraic cycles,” Duke Univ. Math. Series, No. 4 (1980). · Zbl 0436.14003
[11] S. Bloch, ”The dilogarithm and extensions of Lie algebras,” Lect. Notes Math.,B54, 1–23 (1981). · Zbl 0469.14009
[12] A. Borel, ”Stable and real cohomology of arithmetic groups,” Ann. Sci. ENS,7, 235–272 (1974). · Zbl 0316.57026
[13] A. Borel, ”Cohomologie de SLn et valeurs de fonctions zeta aux points entiers,” Ann. Scu. Norm. Super. Pisa Cl. Sci.,4, No. 4, 613–636 (1977). · Zbl 0382.57027
[14] A. K. Bousfield and D. M. Kan, ”Homotopy limits, completions and localizations,” Lect. Notes Math.,304 (1972). · Zbl 0259.55004
[15] P. Deligne, ”Theorie de Hodge. II,” Publ. Math. Inst. Hautes Etudes Scient.,40, 5–58 (1971). · Zbl 0219.14007
[16] P. Deligne, ”Theorie de Hodge. III,” Publ. Math. Inst. Hautes Etudes Scient.,44, 5–77 (1974). · Zbl 0237.14003
[17] P. Deligne, ”Les constantes des equations fonctionelles des fonctions L,” Lect. Notes Math.,349, 501–597 (1973).
[18] P. Deligne, ”Valeurs de fonctions L et periodes d’integrales,” Automorphic Forms, Representations, and L-Functions, Proc. Symp. Pure Math. Am. Math. Soc., Corvallis, Ore. (1977), Part 2, Providence, R.I. (1979), pp. 313–346.
[19] P. Deligne, ”Le symbole modere,” Manuscript (1979).
[20] P. Deligne and M. Rapoport, ”Les schemas de modules de courbes elliptiques,” Lect. Notes Math.,349, 143–316 (1973). · Zbl 0281.14010
[21] J. Dupont, ”Simplicial de Rham cohomology and characteristic classes of flat bundles,” Topology,15, No. 3, 233–245 (1976). · Zbl 0331.55012
[22] H. Gillet, ”Riemann-Roch theorems for higher algebraic K-theory,” Adv. Math.,40, 203–289 (1981). · Zbl 0478.14010
[23] H. Gillet, ”Comparison of K-theory spectral sequences with applications,” Lect. Notes Math., No. 854, 141–167 (1981). · Zbl 0478.14011
[24] B. Gross, ”Higher regulators and values of Artin’s L-functions,” Preprint (1979).
[25] H. Jacquet, ”Automorphic forms on GL(2),” Lect. Notes Math., No. 78 (1971). · Zbl 0236.12010
[26] Ch. Kratzer, ”{\(\lambda\)}-structure en K-theorie algebrique,” Comment. Math. Helv.,55, No. 2, 233–254 (1980). · Zbl 0444.18008
[27] J.-L. Loday, ”Symboles en K-theorie algebrique superiore,” C. R. Acad. Sci.,292, 863–867 (1981).
[28] D. Quillen, ”Higher algebraic K-theory. I,” Lect. Notes Math., No. 341 (1973). · Zbl 0292.18004
[29] B. Saint-Donat, ”Technique de descent cohomologique,” Lect. Notes Math.,270, 83–162 (1972).
[30] Ch. Soulé, ”Operations en K-theorie algebrique,” Preprint (1980).
[31] A. Suslin, ”Homology of GLn, characteristic classes, and Milnor’s K-theory,” Preprint, LOMI (1982).
[32] J. Tate, ”Algebraic cycles and poles of zeta functions,” Arithmetical Algebraic Geometry, New York (1965), pp. 93–100.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.