Ofman, Salomon Résultats sur les d’d” et d”-cohomologies. Applications à l’intégration sur les cycles analytiques. II. (Some results on \(\partial {\bar\partial}\)-cohomology and \({\bar\partial}\)-cohomology. Application to the integration on analytic cycles. II). (French) Zbl 0588.32012 C. R. Acad. Sci., Paris, Sér. I 300, 133-135 (1985). This paper is a continuation of a preceding note [ibid. 300, 43-45 (1985; Zbl 0584.32017)], wherein the author calculates, among other things, the dimension of the homology space belonging to a complex \[ H^ q(Y,\Omega^{q-1})\to^{d}H^ q(Y,\Omega^ q)\to^{i}V^{q,q}(Y), \] i being the natural map that associates to a \({\bar \partial}\)- cohomology class the corresponding \(\partial {\bar \partial}\)-cohomology class in the Andreotti-Norguet space \(V^{q,q}(Y)\). Here \(Y=Z\setminus X\), where Z is a compact Kähler manifold and X is a submanifold. Several applications and special cases are stated. Reviewer: E.J.Akutowicz Cited in 2 Documents MSC: 32C35 Analytic sheaves and cohomology groups 58A10 Differential forms in global analysis 14F40 de Rham cohomology and algebraic geometry 32C30 Integration on analytic sets and spaces, currents 32Q99 Complex manifolds Keywords:holomorphic differential forms; integrals over analytic cycles; \({\bar \partial }\)-cohomology; \(\partial {\bar \partial }\)-cohomology; Andreotti-Norguet space Citations:Zbl 0584.32017 PDF BibTeX XML Cite \textit{S. Ofman}, C. R. Acad. Sci., Paris, Sér. I 300, 133--135 (1985; Zbl 0588.32012) OpenURL