×

Local and global behavior near homoclinic orbits. (English) Zbl 0588.58041

We study the local behavior of systems near homoclinic orbits to stationary points of saddle-focus type. We explicitly describe how a periodic orbit approaches homoclinicity and, with the help of numerical examples, discuss how these results relate to global patterns of bifurcations.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37G99 Local and nonlocal bifurcation theory for dynamical systems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] L. P. Sil’nikov, A Case of the Existence of a Denumerable Set of Periodic Motions,Sov. Math. Dokl. 6:163-166 (1965).
[2] L. P. Sil’nikov, A Contribution to the Problem of the Structure of an Extended Neighborhood of a Rough Equilibrium State of Saddle-Focus Type,Math. USSR Sbornik 10:91-102 (1970). · Zbl 0216.11201
[3] A. Arneodo, P. Coullet, E. Speigel, and C. Tresser, Asymptotic Chaos, Preprint, Universite de Nice (1982).
[4] J. Guckenheimer, Multiple Bifurcation Problems of Codimension Two, Preprint, U.C. Santa Cruz (1980). · Zbl 0498.58014
[5] J. Guckenheimer, On a Co-Dimension Two Bifurcation, inDynamical Systems and Turbulence: Warwick 1980, D. Rand and L.-S. Young, eds., Lecture Notes in Mathematics No. 898 (Springer-Verlag, Berlin, 1981).
[6] P. Gaspard, Memoire de License, Universite de Bruxelles (1982).
[7] A. Arneodo, P. Coullet, and C. Tresser, Possible New Strange Attractors with Spiral Structure,Commun. Math. Phys. 79:573-579 (1981). · Zbl 0485.58013
[8] G. R. Belitskii, Equivalence and Normal Forms of Germs of Smooth Mappings,Russ. Math. Surv. 33:107-177 (1978). · Zbl 0398.58009
[9] C. Tresser, thesis, Universite de Nice (1981).
[10] H. W. Broer and G. Vegter, Subordinate Sil’nikov Bifurcations near Some Singularities of Vector Fields Having Low Codimension, Preprint ZW-8208, Rijksuniversitat, Groningen (1982). · Zbl 0553.58024
[11] J. A. Yorke and K. T. Alligood, Cascades of Period-Doubling Bifurcations: A Prerequisite for Horseshoes, Preprint, University of Maryland (1982). · Zbl 0541.58039
[12] P. Gaspard, Generation of a Countable Set of Homoclinic Flows Through Bifurcation,Phys. Lett. 97A:1-4 (1983). · Zbl 0555.58021
[13] S. P. Hastings, Single and Multiple Pulse Waves for the Fitzhugh-Nagumo Equations,SIAM J. Appl. Math. 42(2):247-260 (1982). · Zbl 0503.92009
[14] J. Evans, N. Fenichel, and J. A. Feroe, Double Impulse Solutions in Nerve Axon Equations,SIAM J. Appl. Math. 42(2):219-234 (1983). · Zbl 0512.92006
[15] J. A. Feroe, Existence and Stability of Multiple Impulse Solutions of a Nerve Axon Equation,SIAM J. Appl. Math. 42(2):235-246 (1983). · Zbl 0502.92002
[16] C. Sparrow,The Lorenz Equations: Bifurcations, Chaos and Strange Attractors, Appl. Math. Sci. No. 41 (Springer-Verlag, New York, 1982). · Zbl 0504.58001
[17] E. N. Lorenz, Deterministic Non-Periodic Flows,J. Atmos. Sci. 20:130-141 (1963). · Zbl 1417.37129
[18] R. Rössler, F. Gotz, and O. E. Rössler, Chaos in Endocrinology,Biophys. J. 25:216A (1979).
[19] C. Sparrow, Chaos in a Three-Dimensional Single Loop Feedback System with a Piece-wise Linear Feedback Function,J. Math. Anal. Appl. 83:275-291 (1981). · Zbl 0518.34037
[20] O. E. Rössler, The Gluing Together Principle and Chaos, inNon-linear Problems of Analysis in Geometry and Mechanics, M. Atteia, D. Bancel, and I. Gumowski, eds. (Pitman, New York, 1981), pp. 50-56.
[21] B. Uehleke, Chaos in einem stuckweise linearen System: Analytische Resultate, Ph.D. thesis, Tübingen (1982).
[22] A. Arneodo, P. Coullet, and C. Tresser, Oscillators with Chaotic Behavior: An Illustration of a Theorem by Sil’nikov,J. Stat. Phys. 27:171-182 (1982). · Zbl 0522.58033
[23] O. E. Rössler, Continuous Chaos: Four Prototype Equations, inBifurcation Theory and Applications in Scientific Disciplines, O. Gurel and O. E. Rössler, eds., Proc. N.Y. Acad. Sci. No. 316, pp. 376-394 (1978).
[24] E. Knobloch and N. O. Weiss, Bifurcations in a Model of Magnetoconvection,Physica 9D:379-407 (1983). · Zbl 0583.76057
[25] A. Bernoff, Preprint, University of Cambridge (1984).
[26] E. Knobloch and N. O. Weiss, Bifurcations in a Model of Double-Diffusive Convection,Phys. Lett. 85A(3):127-130 (1981).
[27] D. R. Moore, J. Toomre, E. Knobloch, and N. O. Weiss, Chaos in Thermosolutal Convection: Period Doubling for Partial Differential Equations,Nature 303: (1983).
[28] P. Gaspard and G. Nicolis, What Can We Learn from Homoclinic Orbits in Chaotic Dynamics?J. Stat. Phys. 31:499-518 (1983). · Zbl 0587.58035
[29] P. Gaspard, R. Kapral, and G. Nicolis, Bifurcation Phenomena near Homoclinic Systems: A Two-Parameter Analysis, This Issue,J. Stat. Phys. 35:697 (1984). · Zbl 0588.58055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.